UV/IR Mixing in Marginal Fermi Liquids


Abstract in English

When Fermi surfaces (FS) are subject to long-range interactions that are marginal in the renormalization-group sense, Landau Fermi liquids are destroyed, but only barely. With the interaction further screened by particle-hole excitations through one-loop quantum corrections, it has been believed that these marginal Fermi liquids (MFLs) are described by weakly coupled field theories at low energies. In this paper, we point out a possibility in which higher-loop processes qualitatively change the picture through UV/IR mixing, in which the size of FS enters as a relevant scale. The UV/IR mixing effect enhances the coupling at low energies, such that the basin of attraction for the weakly coupled fixed point of a (2+1)-dimemsional MFL shrinks to a measure-zero set in the low-energy limit. This UV/IR mixing is caused by gapless virtual Cooper pairs that spread over the entire FS through the marginal long-range interactions. Our finding signals a possible breakdown of the patch description for the MFL, and questions the validity of using the MFL as the base theory in a controlled scheme for non-Fermi liquids that arise from relevant long-range interactions.

Download