Do you want to publish a course? Click here

Spin Physics at COSY (2021-2024 and beyond) -- Pathfinder investigations toward an EDM storage ring and Spin-for-FAIR

145   0   0.0 ( 0 )
 Added by Frank Rathmann
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The unique global feature of COSY is its ability to accelerate, store and manipulate polarized proton and deuteron beams. In the recent past, these beams have been used primarily for precision measurements, in particular in connection with the study of charged particle EDMs (Electric Dipole Moment) in storage rings. The role of COSY as a R&D facility and for initial (static and oscillating) EDM measurements can hardly be overestimated. Unfortunately, as a consequence of the strategic decisions of Forschungszentrum Julich and the subsequent TransFAIR agreement between FZJ and GSI Darmstadt, it is currently planned to stop the operation of COSY by the end of 2024. The various groups working with polarized beams at COSY felt it important to collect information on essential measurements to be performed until the termination of machine operation. These experiments, briefly described in this document along with an estimate of the beam time required, serve as pathfinder investigations toward an EDM storage ring and Spin for FAIR.



rate research

Read More

109 - F. Rathmann , N.N. Nikolaev , 2019
Precision experiments, such as the search for a deuteron electric dipole moments using a storage rings like COSY, demand for an understanding of the spin dynamics with unprecedented accuracy. In such an enterprise, numerical predictions play a crucial role for the development and later application of spin-tracking algorithms. Various measurement concepts involving polarization effects induced by an RF Wien filter and static solenoids in COSY are discussed. The matrix formalism, applied here, deals textit{solely} with spin rotations textit{on the closed orbit} of the machine, and is intended to provide textit{numerical} guidance for the development of beam and spin-tracking codes for rings that employ realistic descriptions of the electric and magnetic bending and focusing elements, solenoids etc., and a realistically-modeled RF Wien filter.
This project exploits charged particles confined as a storage ring beam (proton, deuteron, possibly $^3$He) to search for an intrinsic electric dipole moment (EDM, $vec d$) aligned along the particle spin axis. Statistical sensitivities can approach $10^{-29}$~e$cdot$cm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarization, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarization ($vec d timesvec E$). The slow rise in the vertical polarization component, detected through scattering from a target, signals the EDM. The project strategy is outlined. It foresees a step-wise plan, starting with ongoing COSY activities that demonstrate technical feasibility. Achievements to date include reduced polarization measurement errors, long horizontal-plane polarization lifetimes, and control of the polarization direction through feedback from the scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally the high precision electric-field storage ring.
SPARC collaboration at FAIR pursues the worldwide unique research program by utilizing storage ring and trapping facilities for highly-charged heavy ions. The main focus is laid on the exploration of the physics at strong, ultra-short electromagnetic fields including the fundamental interactions between electrons and heavy nuclei as well as on the experiments at the border between nuclear and atomic physics. Very recently SPARC worked out a realization scheme for experiments with highly-charged heavy-ions at relativistic energies in the High-Energy Storage Ring HESR and at very low-energies at the CRYRING coupled to the present ESR. Both facilities provide unprecedented physics opportunities already at the very early stage of FAIR operation. The installation of CRYRING, dedicated Low-energy Storage Ring (LSR) for FLAIR, may even enable a much earlier realisation of the physics program of FLAIR with slow anti-protons.
The Quasi-Frozen Spin (QFS) method was proposed by Yu. Senichev et al. in [1] as an alternative to the Frozen Spin (FS) method [2] for the search of deuteron electric dipole moment (dEDM). The QFS approach simplifies the design of the lattice. In particular, small changes to the currently operating COSY storage ring will satisfy the QFS condition. Spin decoherence and systematic errors fundamentally limit EDM signal detection and measurement. Our QFS implementation method includes measurement of spin precession in (1) the horizontal plane to calibrate the magnetic field when changing field polarity and (2) the vertical plane to search for EDM. To address systematic errors due to element misalignments, we track particle bunches in forward and reverse directions. We modeled and tracked two QFS and one FS lattice in COSY INFINITY. The models include normally distributed random variate spin kicks in magnetic dipoles and combined electrostatic and magnetic field elements. We used Wolfram Mathematica programs to partially automate lattice input file generation and tracking output data analysis. We observed indications that the QFS method is a viable alternative to the FS method. [1] Y. Senichev, A. Lehrach, B. Lorentz, R. Maier, S. Andrianov, A. Ivanov, S. Chekmenev, M. Berz, and E. Valetov (on behalf of the JEDI Collaboration), in Proceedings of IPAC 2015, Richmond, VA (2015) MOPWA044. [2] D. Anastassopoulos et al., AGS Proposal: Search for a Permanent Electric Dipole Moment of the Deuteron Nucleus at the $10^{-29}:ecdotmathrm{cm}$ Level, BNL Report, Brookhaven National Laboratory, Upton, NY (2008).
The paper describes the commissioning of the experimental equipment and the machine studies required for the first spin-filtering experiment with protons at a beam kinetic energy of $49.3,$MeV in COSY. The implementation of a low-$beta$ insertion made it possible to achieve beam lifetimes of $tau_{rm{b}}=8000,$s in the presence of a dense polarized hydrogen storage-cell target of areal density $d_{rm t}=(5.5pm 0.2)times 10^{13},mathrm{atoms/cm^{2}}$. The developed techniques can be directly applied to antiproton machines and allow for the determination of the spin-dependent $bar{p}p$ cross sections via spin filtering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا