Do you want to publish a course? Click here

Some $Q$-curvature operators on five-dimensional pseudohermitian manifolds

67   0   0.0 ( 0 )
 Added by Jeffrey Case
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We construct $Q$-curvature operators on $d$-closed $(1,1)$-forms and on $overline{partial}_b$-closed $(0,1)$-forms on five-dimensional pseudohermitian manifolds. These closely related operators give rise to a new formula for the scalar $Q$-curvature. As applications, we give a cohomological characterization of CR five-manifolds which admit a $Q$-flat contact form; and we show that every closed, strictly pseudoconvex CR five-manifold with trivial first real Chern class admits a $Q$-flat contact form provided the $Q$-curvature operator on $overline{partial}_b$-closed $(0,1)$-forms is nonnegative.



rate research

Read More

We establish some important inequalities under a lower weighted Ricci curvature bound on Finsler manifolds. Firstly, we establish a relative volume comparison of Bishop-Gromov type. As one of the applications, we obtain an upper bound for volumes of the Finsler manifolds. Further, when the S-curvature is bounded on the whole manifold, we obtain a theorem of Bonnet-Myers type on Finsler manifolds. Finally, we obtain a sharp Poincar{e}-Lichnerowicz inequality by using integrated Bochner inequality, from which we obtain a sharp lower bound for the first eigenvalue on the Finsler manifolds.
We exhibit Walker manifolds of signature (2,2) with various commutativity properties for the Ricci operator, the skew-symmetric curvature operator, and the Jacobi operator. If the Walker metric is a Riemannian extension of an underlying affine structure A, these properties are related to the Ricci tensor of A.
176 - Xiaonan Ma 2008
We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established.
We consider canonical fibrations and algebraic geometric structures on homogeneous CR manifolds, in connection with the notion of CR algebra. We give applications to the classifications of left invariant CR structures on semisimple Lie groups and of CR-symmetric structures on complete flag varieties.
67 - E Falbel 2018
We define flag structures on a real three manifold M as the choice of two complex lines on the complexified tangent space at each point of M. We suppose that the plane field defined by the complex lines is a contact plane and construct an adapted connection on an appropriate principal bundle. This includes path geometries and CR structures as special cases. We prove that the null curvature models are given by totally real submanifolds in the flag space SL(3, C)/B, where B is the subgroup of upper triangular matrices. We also define a global invariant which is analogous to the Chern-Simons secondary class invariant for three manifolds with a Riemannian structure and to the Burns-Epstein invariant in the case of CR structures. It turns out to be constant on homotopy classes of totally real immersions in flag space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا