On the sample-dependent minimal conductivity in weakly disordered graphene


Abstract in English

We present a unified understanding for experimentally observed minimal dc conductivity at the Dirac point in weak disordered graphene. First of all, based on the linear response theory, we unravel that randomness or disorder, inevitably inducing momentum dependent corrections in electron self-energy function, naturally yields a sample-dependent minimal conductivity. Taking the long-ranged Gaussian potential as an example, we demonstrate the momentum dependent self-energy function within the Born approximation, and further validate it via numerical simulation using large-scale Lanczos algorithm. The explicit dependence of self-energy on the intensity, concentration and range of potential is critically addressed. Therefore, our results provide a reasonable interpretation of the sample-dependent minimal conductivity observed in graphene samples.

Download