Fermi surface nesting, vacancy ordering and the emergence of superconductivity in IrSb compounds


Abstract in English

Fermi surface nesting, as a peculiar reciprocal space feature, is not only closely correlated with the real space superstructure, but also directly modulates the underlying electronic behavior. In this work, we elucidate the Fermi surface nesting feature of the IrSb compound with buckled-honeycomb-vacancy (BHV) ordering through Rh and Sn doping, and its correlation with structure and electronic state evolution. The advantageous substitution of atom sites (i.e., Rh on the Ir sites, Sn on the Sb sites, respectively), rather than the direct occupation of vacancies, induces the collapse of BHV order and the emergence of superconductivity. The distinct superconducting behavior of Rh and Sn incorporated systems are ascribed to the mismatch of Fermi surface nesting in the Sn case.

Download