Supersymmetry is a technique that allows us to extract information about the states and spectra of quantum mechanical systems which may otherwise be unsolvable. In this paper we reconstruct Ioffes set of states for the singular non-separable two-dimensional Morse potential using supersymmetry from a non-degenerate set of states constructed for the initial separable Morse Hamiltonian. We define generalised coherent states, compute their uncertainty relations, and we find that the singularity in the partner Hamiltonian significantly affects the localisation of the coherent state wavefunction.