Do you want to publish a course? Click here

Time Series Prediction using Deep Learning Methods in Healthcare

303   0   0.0 ( 0 )
 Added by Mohammad Morid
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Traditional machine learning methods face two main challenges in dealing with healthcare predictive analytics tasks. First, the high-dimensional nature of healthcare data needs labor-intensive and time-consuming processes to select an appropriate set of features for each new task. Secondly, these methods depend on feature engineering to capture the sequential nature of patient data, which may not adequately leverage the temporal patterns of the medical events and their dependencies. Recent deep learning methods have shown promising performance for various healthcare prediction tasks by addressing the high-dimensional and temporal challenges of medical data. These methods can learn useful representations of key factors (e.g., medical concepts or patients) and their interactions from high-dimensional raw (or minimally-processed) healthcare data. In this paper we systemically reviewed studies focused on using deep learning as the prediction model to leverage patient time series data for a healthcare prediction task from methodological perspective. To identify relevant studies, MEDLINE, IEEE, Scopus and ACM digital library were searched for studies published up to February 7th 2021. We found that researchers have contributed to deep time series prediction literature in ten research streams: deep learning models, missing value handling, irregularity handling, patient representation, static data inclusion, attention mechanisms, interpretation, incorporating medical ontologies, learning strategies, and scalability. This study summarizes research insights from these literature streams, identifies several critical research gaps, and suggests future research opportunities for deep learning in patient time series data.

rate research

Read More

Time series prediction with neural networks has been the focus of much research in the past few decades. Given the recent deep learning revolution, there has been much attention in using deep learning models for time series prediction, and hence it is important to evaluate their strengths and weaknesses. In this paper, we present an evaluation study that compares the performance of deep learning models for multi-step ahead time series prediction. The deep learning methods comprise simple recurrent neural networks, long short-term memory (LSTM) networks, bidirectional LSTM networks, encoder-decoder LSTM networks, and convolutional neural networks. We provide a further comparison with simple neural networks that use stochastic gradient descent and adaptive moment estimation (Adam) for training. We focus on univariate time series for multi-step-ahead prediction from benchmark time-series datasets and provide a further comparison of the results with related methods from the literature. The results show that the bidirectional and encoder-decoder LSTM network provides the best performance in accuracy for the given time series problems.
Irregularly sampled time series (ISTS) data has irregular temporal intervals between observations and different sampling rates between sequences. ISTS commonly appears in healthcare, economics, and geoscience. Especially in the medical environment, the widely used Electronic Health Records (EHRs) have abundant typical irregularly sampled medical time series (ISMTS) data. Developing deep learning methods on EHRs data is critical for personalized treatment, precise diagnosis and medical management. However, it is challenging to directly use deep learning models for ISMTS data. On the one hand, ISMTS data has the intra-series and inter-series relations. Both the local and global structures should be considered. On the other hand, methods should consider the trade-off between task accuracy and model complexity and remain generality and interpretability. So far, many existing works have tried to solve the above problems and have achieved good results. In this paper, we review these deep learning methods from the perspectives of technology and task. Under the technology-driven perspective, we summarize them into two categories - missing data-based methods and raw data-based methods. Under the task-driven perspective, we also summarize them into two categories - data imputation-oriented and downstream task-oriented. For each of them, we point out their advantages and disadvantages. Moreover, we implement some representative methods and compare them on four medical datasets with two tasks. Finally, we discuss the challenges and opportunities in this area.
We extract and use player position time-series data, tagged along with the action types, to build a competent model for representing team tactics behavioral patterns and use this representation to predict the outcome of arbitrary movements. We provide a framework for the useful encoding of short tactics and space occupations in a more extended sequence of movements or tactical plans. We investigate game segments during a match in which the team in possession of the ball regularly attempts to reach a position where they can take a shot at goal for a single game. A carefully designed and efficient kernel is employed using a triangular fuzzy membership function to create multiple time series for players potential of presence at different court regions. Unsupervised learning is then used for time series using triplet loss and deep neural networks with exponentially dilated causal convolutions for the derived multivariate time series. This works key contribution lies in its approach to model how short scenes contribute to other longer ones and how players occupies and creates new spaces in-game court. We discuss the effectiveness of the proposed approach for prediction and recognition tasks on the professional basketball SportVU dataset for the 2015-16 half-season. The proposed system demonstrates descent functionality even with relatively small data.
Extreme events are occurrences whose magnitude and potential cause extensive damage on people, infrastructure, and the environment. Motivated by the extreme nature of the current global health landscape, which is plagued by the coronavirus pandemic, we seek to better understand and model extreme events. Modeling extreme events is common in practice and plays an important role in time-series prediction applications. Our goal is to (i) compare and investigate the effect of some common extreme events modeling methods to explore which method can be practical in reality and (ii) accelerate the deep learning training process, which commonly uses deep recurrent neural network (RNN), by implementing the asynchronous local Stochastic Gradient Descent (SGD) framework among multiple compute nodes. In order to verify our distributed extreme events modeling, we evaluate our proposed framework on a stock data set S&P500, with a standard recurrent neural network. Our intuition is to explore the (best) extreme events modeling method which could work well under the distributed deep learning setting. Moreover, by using asynchronous distributed learning, we aim to significantly reduce the communication cost among the compute nodes and central server, which is the main bottleneck of almost all distributed learning frameworks. We implement our proposed work and evaluate its performance on representative data sets, such as S&P500 stock in $5$-year period. The experimental results validate the correctness of the design principle and show a significant training duration reduction upto $8$x, compared to the baseline single compute node. Our results also show that our proposed work can achieve the same level of test accuracy, compared to the baseline setting.
While Semi-supervised learning has gained much attention in computer vision on image data, yet limited research exists on its applicability in the time series domain. In this work, we investigate the transferability of state-of-the-art deep semi-supervised models from image to time series classification. We discuss the necessary model adaptations, in particular an appropriate model backbone architecture and the use of tailored data augmentation strategies. Based on these adaptations, we explore the potential of deep semi-supervised learning in the context of time series classification by evaluating our methods on large public time series classification problems with varying amounts of labelled samples. We perform extensive comparisons under a decidedly realistic and appropriate evaluation scheme with a unified reimplementation of all algorithms considered, which is yet lacking in the field. We find that these transferred semi-supervised models show significant performance gains over strong supervised, semi-supervised and self-supervised alternatives, especially for scenarios with very few labelled samples.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا