Do you want to publish a course? Click here

Statistical Challenges in Tracking the Evolution of SARS-CoV-2

89   0   0.0 ( 0 )
 Added by Lorenzo Cappello
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Genomic surveillance of SARS-CoV-2 has been instrumental in tracking the spread and evolution of the virus during the pandemic. The availability of SARS-CoV-2 molecular sequences isolated from infected individuals, coupled with phylodynamic methods, have provided insights into the origin of the virus, its evolutionary rate, the timing of introductions, the patterns of transmission, and the rise of novel variants that have spread through populations. Despite enormous global efforts of governments, laboratories, and researchers to collect and sequence molecular data, many challenges remain in analyzing and interpreting the data collected. Here, we describe the models and methods currently used to monitor the spread of SARS-CoV-2, discuss long-standing and new statistical challenges, and propose a method for tracking the rise of novel variants during the epidemic.



rate research

Read More

In the case of SARS-CoV-2 pandemic management, wastewater-based epidemiology aims to derive information on the infection dynamics by monitoring virus concentrations in the wastewater. However, due to the intrinsic random fluctuations of the viral signal in the wastewater (due to e.g., dilution; transport and fate processes in sewer system; variation in the number of persons discharging; variations in virus excretion and water consumption per day) the subsequent prevalence analysis may result in misleading conclusions. It is thus helpful to apply data filtering techniques to reduce the noise in the signal. In this paper we investigate 13 smoothing algorithms applied to the virus signals monitored in four wastewater treatment plants in Austria. The parameters of the algorithms have been defined by an optimization procedure aiming for performance metrics. The results are further investigated by means of a cluster analysis. While all algorithms are in principle applicable, SPLINE, Generalized Additive Model and Friedman Super Smoother are recognized as superior methods in this context (with the latter two having a tendency to over-smoothing). A first analysis of the resulting datasets indicates the influence of catchment size for wastewater-based epidemiology as smaller communities both reveal a signal threshold before any relation with infection dynamics is visible and also a higher sensitivity towards infection clusters.
The transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of paramount importance to the controlling and combating of coronavirus disease 2019 (COVID-19) pandemic. Currently, near 15,000 SARS-CoV-2 single mutations have been recorded, having a great ramification to the development of diagnostics, vaccines, antibody therapies, and drugs. However, little is known about SARS-CoV-2 evolutionary characteristics and general trend. In this work, we present a comprehensive genotyping analysis of existing SARS-CoV-2 mutations. We reveal that host immune response via APOBEC and ADAR gene editing gives rise to near 65% of recorded mutations. Additionally, we show that children under age five and the elderly may be at high risk from COVID-19 because of their overreacting to the viral infection. Moreover, we uncover that populations of Oceania and Africa react significantly more intensively to SARS-CoV-2 infection than those of Europe and Asia, which may explain why African Americans were shown to be at increased risk of dying from COVID-19, in addition to their high risk of getting sick from COVID-19 caused by systemic health and social inequities. Finally, our study indicates that for two viral genome sequences of the same origin, their evolution order may be determined from the ratio of mutation type C$>$T over T$>$C.
While many epidemiological models have being proposed to understand and handle COVID-19, too little has been invested to understand how the virus replicates in the human body and potential antiviral can be used to control the replication cycle. In this work, using a control theoretical approach, validated mathematical models of SARS-CoV-2 in humans are properly characterized. A complete analysis of the main dynamic characteristic is developed based on the reproduction number. The equilibrium regions of the system are fully characterized, and the stability of such a regions, formally established. Mathematical analysis highlights critical conditions to decrease monotonically SARS-CoV-2 in the host, such conditions are relevant to tailor future antiviral treatments. Simulation results show the potential benefits of the aforementioned system characterization.
84 - Tommy Nyberg 2021
Objective: To evaluate the relationship between coronavirus disease 2019 (COVID-19) diagnosis with SARS-CoV-2 variant B.1.1.7 (also known as Variant of Concern 202012/01) and the risk of hospitalisation compared to diagnosis with wildtype SARS-CoV-2 variants. Design: Retrospective cohort, analysed using stratified Cox regression. Setting: Community-based SARS-CoV-2 testing in England, individually linked with hospitalisation data. Participants: 839,278 laboratory-confirmed COVID-19 patients, of whom 36,233 had been hospitalised within 14 days, tested between 23rd November 2020 and 31st January 2021 and analysed at a laboratory with an available TaqPath assay that enables assessment of S-gene target failure (SGTF). SGTF is a proxy test for the B.1.1.7 variant. Patient data were stratified by age, sex, ethnicity, deprivation, region of residence, and date of positive test. Main outcome measures: Hospitalisation between 1 and 14 days after the first positive SARS-CoV-2 test. Results: 27,710 of 592,409 SGTF patients (4.7%) and 8,523 of 246,869 non-SGTF patients (3.5%) had been hospitalised within 1-14 days. The stratum-adjusted hazard ratio (HR) of hospitalisation was 1.52 (95% confidence interval [CI] 1.47 to 1.57) for COVID-19 patients infected with SGTF variants, compared to those infected with non-SGTF variants. The effect was modified by age (P<0.001), with HRs of 0.93-1.21 for SGTF compared to non-SGTF patients below age 20 years, 1.29 in those aged 20-29, and 1.45-1.65 in age groups 30 years or older. Conclusions: The results suggest that the risk of hospitalisation is higher for individuals infected with the B.1.1.7 variant compared to wildtype SARS-CoV-2, likely reflecting a more severe disease. The higher severity may be specific to adults above the age of 30.
123 - Rui Wang , Jiahui Chen , Kaifu Gao 2020
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been mutating since it was first sequenced in early January 2020. The genetic variants have developed into a few distinct clusters with different properties. Since the United States (US) has the highest number of viral infected patients globally, it is essential to understand the US SARS-CoV-2. Using genotyping, sequence-alignment, time-evolution, $k$-means clustering, protein-folding stability, algebraic topology, and network theory, we reveal that the US SARS-CoV-2 has four substrains and five top US SARS-CoV-2 mutations were first detected in China (2 cases), Singapore (2 cases), and the United Kingdom (1 case). The next three top US SARS-CoV-2 mutations were first detected in the US. These eight top mutations belong to two disconnected groups. The first group consisting of 5 concurrent mutations is prevailing, while the other group with three concurrent mutations gradually fades out. Our analysis suggests that female immune systems are more active than those of males in responding to SARS-CoV-2 infections. We identify that one of the top mutations, 27964C$>$T-(S24L) on ORF8, has an unusually strong gender dependence. Based on the analysis of all mutations on the spike protein, we further uncover that three of four US SASR-CoV-2 substrains become more infectious. Our study calls for effective viral control and containing strategies in the US.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا