On the rational approximation to Thue--Morse rational numbers


Abstract in English

Let $b ge 2$ and $ell ge 1$ be integers. We establish that there is an absolute real number $K$ such that all the partial quotients of the rational number $$ prod_{h = 0}^ell , (1 - b^{-2^h}), $$ of denominator $b^{2^{ell+1} - 1}$, do not exceed $exp(K (log b)^2 sqrt{ell} 2^{ell/2})$.

Download