No Arabic abstract
Magnetic interaction between photons and dipoles is essential in electronics, sensing, spectroscopy, and quantum computing. However, its weak strength often requires resonators to confine and store the photons. Here, we present mode engineering techniques to create resonators with ultrasmall mode volume and ultrahigh quality factor. In particular, we show that it is possible to achieve an arbitrarily small mode volume only limited by materials or fabrication with minimal Q degradation. We compare mode-engineered cavities in a trade-off space and show that the magnetic interaction can be strengthened more than $10^{16}$ times compared to free space. These methods enable new applications from high-cooperativity microwave-spin coupling in quantum computing or compact electron paramagnetic resonance (EPR) sensors to fundamental science such as dark matter searches.
In this paper we construct a new type of cavity array, in each cavity of which multiple two-level atoms interact with two independent photon modes. This system can be totally governed by a two-mode Dicke-lattice model, which includes all of the counter-rotating terms and therefore works well in the ultrastrong coupling regime achieved in recent experiments. Attributed to its special atom-photon coupling scheme, this model supports a global conserved excitation and a continuous $U(1)$ symmetry, rather than the discrete $Z_{2}$ symmetry in the standard Dicke-lattice model. This distinct change of symmetry via adding an extra photon mode strongly impacts the nature of photon localization/delocalization behavior. Specifically, the atom-photon interaction features stable Mott-lobe structures of photons and a second-order superfluid-Mott-insulator phase transition, which share similarities with the Jaynes-Cummings-lattice and Bose-Hubbard models. More interestingly, the Mott-lobe structures predicted here depend crucially on the atom number of each site. We also show that our model can be mapped into a continuous $XX$ spin model. Finally, we propose a scheme to implement the introduced cavity array in circuit quantum electrodynamics. This work broadens our understanding of strongly-correlated photons.
Accurate and efficient quantum control in the presence of constraints and decoherence is a requirement and a challenge in quantum information processing. Shortcuts to adiabaticity, originally proposed to speed up slow adiabatic process, have nowadays become versatile toolboxes for preparing states or controlling the quantum dynamics. Unique shortcut designs are required for each quantum system with intrinsic physical constraints, imperfections, and noises. Here, we implement fast and robust control for the state preparation and state engineering in a rare-earth ions system. Specifically, the interacting pulses are inversely engineered and further optimized with respect to inhomogeneities of the ensemble and the unwanted interaction with other qubits. We demonstrate that our protocols surpass the conventional adiabatic schemes, by reducing the decoherence from the excited state decay and inhomogeneous broadening. The results presented here are applicable to other noisy intermediate scale quantum systems.
We explore the nonlinear response of tailor-cut light-matter hybrid states in a novel regime, where both the Rabi frequency induced by a coherent driving field and the vacuum Rabi frequency set by a cavity field are comparable to the carrier frequency of light. In this previously unexplored strong-field limit of ultrastrong coupling, subcycle pump-probe and multi-wave mixing nonlinearities between different polariton states violate the normal-mode approximation while ultrastrong coupling remains intact, as confirmed by our mean-field model. We expect such custom-cut nonlinearities of hybridized elementary excitations to facilitate non-classical light sources, quantum phase transitions, or cavity chemistry with virtual photons.
We investigate the output generation of squeezed radiation of a cavity photon mode coupled to another off-resonant bosonic excitation. By modulating in time their linear interaction, we predict high degree of output squeezing when the dispersive ultrastrong coupling regime is achieved, i.e., when the interaction rate becomes comparable to the frequency of the lowest energy mode. Our work paves the way to squeezed light generation in frequency domains where the ultrastrong coupling is obtained, e.g., solid-state resonators in the GHz, THz and mid-IR spectral range.
We consider an optomechanical system comprising a single cavity mode and a dense spectrum of acoustic modes and solve for the quantum dynamics of initial cavity mode Fock (i.e., photon number) superposition states and thermal acoustic states. The optomechanical interaction results in dephasing without damping and bears some analogy to gravitational decoherence. For a cavity mode locally coupled to a one-dimensional (1D) elastic string-like environment or two-dimensional (2D) elastic membrane-like environment, we find that the dephasing dynamics depends respectively on the string length and membrane area--a consequence of an infrared divergence in the limit of an infinite-sized string or membrane. On the other hand, for a cavity mode locally coupled to a three-dimensional (3D) bulk elastic solid, the dephasing dynamics is independent of the solid volume (i.e., is infrared finite), but dependent on the local geometry of the coupled cavity--a consequence of an ultraviolet divergence in the limit of a pointlike coupled cavity. We consider as possible respective realizations for the cavity-coupled-1D and 2D acoustic environments, an LC oscillator capacitively coupled to a partially metallized strip and a cavity light mode interacting via light pressure with a membrane.