Incoherent localized structures and hidden coherent solitons from the gravitational instability of the Schrodinger-Poisson equation


Abstract in English

The long-term behavior of a modulationally unstable conservative nonintegrable system is known to be characterized by the soliton turbulence self-organization process. We consider this problem in the presence of a long-range interaction in the framework of the Schrodinger-Poisson (or Newton-Schrodinger) equation accounting for the gravitational interaction. By increasing the amount of nonlinearity, the system self-organizes into a large-scale incoherent localized structure that contains hidden coherent soliton states: The solitons can hardly be identified in the usual spatial or spectral domains, while their existence is unveiled in the phase-space representation (spectrogram). We develop a theoretical approach that provides the coupled description of the coherent soliton component (governed by an effective Schrodinger-Poisson equation) and of the incoherent component (governed by a wave turbulence Vlasov-Poisson equation). The theory shows that the incoherent structure introduces an effective trapping potential that stabilizes the hidden coherent soliton, a mechanism that we verify by direct numerical simulations. The theory characterizes the properties of the localized incoherent structure, such as its compactly supported spectral shape. It also clarifies the quantum-to-classical correspondence in the presence of gravitational interactions. This study is of potential interest for self-gravitating Boson models of fuzzy dark matter. Although we focus our paper on the Schrodinger-Poisson equation, we show that our results are general for long-range wave systems characterized by an algebraic decay of the interacting potential. This work should stimulate nonlinear optics experiments in highly nonlocal nonlinear (thermal) media that mimic the long-range nature of gravitational interactions.

Download