Do you want to publish a course? Click here

Ballast water-mediated species spread risk dynamics and policy implications to reduce the invasion risk to the Mediterranean Sea

137   0   0.0 ( 0 )
 Added by Zhaojun Wang
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

The Mediterranean Sea is one of the most heavily invaded marine regions. This work focuses on the dynamics and potential policy options for ballast water-mediated nonindigenous species to the Mediterranean. Specifically, we (1) estimated port risks in years 2012, 2015, and 2018, (2) identified hub ports that connect many clusters, and (3) evaluated four regulatory scenarios. The risk results show that Gibraltar, Suez, and Istanbul remained high-risk ports from 2012-2018, and they served as hub ports that connected several spread clusters. With policy scenario analysis, we found that regulating the high-risk hub ports can disproportionately reduce the overall risk to the Mediterranean: the average risk to all ports was reduced by 5-10% by regulating one high-risk hub port, while the average risk to all ports was only reduced by 0.2% by regulating one average-risk Mediterranean port. We also found that only regulating high-risk ports cannot reduce their risks effectively.



rate research

Read More

Recently we have introduced a simplified model of ecosystem assembly (Capitan et al., 2009) for which we are able to map out all assembly pathways generated by external invasions in an exact manner. In this paper we provide a deeper analysis of the model, obtaining analytical results and introducing some approximations which allow us to reconstruct the results of our previous work. In particular, we show that the population dynamics equations of a very general class of trophic-level structured food-web have an unique interior equilibrium point which is globally stable. We show analytically that communities found as end states of the assembly process are pyramidal and we find that the equilibrium abundance of any species at any trophic level is approximately inversely proportional to the number of species in that level. We also find that the per capita growth rate of a top predator invading a resident community is key to understand the appearance of complex end states reported in our previous work. The sign of these rates allows us to separate regions in the space of parameters where the end state is either a single community or a complex set containing more than one community. We have also built up analytical approximations to the time evolution of species abundances that allow us to determine, with high accuracy, the sequence of extinctions that an invasion may cause. Finally we apply this analysis to obtain the communities in the end states. To test the accuracy of the transition probability matrix generated by this analytical procedure for the end states, we have compared averages over those sets with those obtained from the graph derived by numerical integration of the Lotka-Volterra equations. The agreement is excellent.
African Swine Fever (ASF) is viral infection which causes acute disease in domestic pigs and wild boar. Although the virus does not cause disease in humans, the impact it has on the economy, especially through trade and farming, is substantial. Recent rapid propagation of the (ASF) from East to West of Europe encouraged us to prepare risk assessment for Poland. The early growth estimation can be easily done by matching incidence trajectory to the exponential function, resulting in the approximation of the force of infection. With these calculations the basic reproduction rate of the epidemic, the effective outbreaks detection and elimination times could be estimated. In regression mode, 380 Polish counties (poviats) have been analysed, where 18 (located in Northeast Poland) have been affected (until August 2017) for spatial propagation (risk assessment for future). Mathematical model has been applied by taking into account: swine amount significance, disease vectors (wild boards) significance. We use pseudogravitational models of short and longrange interactions referring to the socio-migratory behavior of wild boars and the pork production chain significance. Spatial modeling in a certain range of parameters proves the existence of a natural protective barrier within boarders of the Congress Poland. The spread of the disease to the Greater Poland should result in the accelerated outbreak of ASF production chain. In the preliminary setup, we perform regression analysis, network outbreak investigation, early epidemic growth estimation and simulate landscape-based propagation.
69 - Christian Emig 2005
The deep-water fauna of the Mediterranean is characterized by an absence of distinctive characteristics and by a relative impoverishment. Both are a result of events after the Messinian salinity crisis (Late Miocene). The three main classes of phenomena involved in producing or recording these effects are analysed and discussed: - Historical: Sequential faunal changes during the Pliocene and thereafter in particular those during the Quaternary glaciations and still in progress. - Bathymetric: Changes in the vertical aspects of the Bathyal and Abyssal zones that took place under peculiar conditions, i.e. homothermy, a relative oligotrophy, the barrier of the Gibraltar sill, and water mass movement. The deeper the habitat of a species in the Mediterranean, the more extensive is its distribution elsewhere. - Geographical: There are strong affinities and relationships between Mediterranean and Atlantic faunas. Endemic species remain a biogeographical problem. Species always become smaller in size eastward where they occupy a progressively deeper habitat. Thus, the existing deep Mediterranean Sea appears to be younger than any other deep-sea constituent of the World Ocean.
Mediterranean ecosystems such as those found in California, Central Chile, Southern Europe, and Southwest Australia host numerous, diverse, fire-adapted micro-ecosystems. These micro-ecosystems are as diverse as mountainous conifer to desert-like chaparral communities. Over the last few centuries, human intervention, invasive species, and climate warming have drastically affected the composition and health of Mediterranean ecosystems on almost every continent. Increased fuel load from fire suppression policies and the continued range expansion of non-native insects and plants, some driven by long-term drought, produced the deadliest wildfire season on record in 2018. As a consequence of these fires, a large number of structures are destroyed, releasing household chemicals into the environment as uncontrolled toxins. The mobilization of these materials can lead to health risks and disruption in both human and natural systems. This article identifies drivers that led to a structural weakening of the mosaic of fire-adapted ecosystems in California, and subsequently increased the risk of destructive and explosive wildfires throughout the state. Under a new climate regime, managing the impacts on systems moving out-of-phase with natural processes may protect lives and ensure the stability of ecosystem services.
We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES) and Shortfall Deviation (SD), which we also introduce, contemplating two fundamental pillars of the risk concept, the probability of adverse events and the variability of an expectation, and considers extreme results. We demonstrate that SD is a generalized deviation measure, whereas SDR is a coherent risk measure. We achieve the dual representation of SDR, and we discuss issues such as its representation by a weighted ES, acceptance sets, convexity, continuity and the relationship with stochastic dominance. Illustrations with real and simulated data allow us to conclude that SDR offers greater protection in risk measurement compared with VaR and ES, especially in times of significant turbulence in riskier scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا