Do you want to publish a course? Click here

Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

439   0   0.0 ( 0 )
 Added by Ningyu Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Large-scale pre-trained language models have contributed significantly to natural language processing by demonstrating remarkable abilities as few-shot learners. However, their effectiveness depends mainly on scaling the model parameters and prompt design, hindering their implementation in most real-world applications. This study proposes a novel pluggable, extensible, and efficient approach named DifferentiAble pRompT (DART), which can convert small language models into better few-shot learners without any prompt engineering. The main principle behind this approach involves reformulating potential natural language processing tasks into the task of a pre-trained language model and differentially optimizing the prompt template as well as the target label with backpropagation. Furthermore, the proposed approach can be: (i) Plugged to any pre-trained language models; (ii) Extended to widespread classification tasks. A comprehensive evaluation of standard NLP tasks demonstrates that the proposed approach achieves a better few-shot performance.



rate research

Read More

The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.
Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3s few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
General-purpose language models have demonstrated impressive capabilities, performing on par with state-of-the-art approaches on a range of downstream natural language processing (NLP) tasks and benchmarks when inferring instructions from very few examples. Here, we evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages without any parameter updates. We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones. Finally, we find the in-context few-shot cross-lingual prediction results of language models are significantly better than random prediction, and they are competitive compared to the existing state-of-the-art cross-lingual models.
123 - Yuxian Gu , Xu Han , Zhiyuan Liu 2021
Prompts for pre-trained language models (PLMs) have shown remarkable performance by bridging the gap between pre-training tasks and various downstream tasks. Among these methods, prompt tuning, which freezes PLMs and only tunes soft prompts, provides an efficient and effective solution for adapting large-scale PLMs to downstream tasks. However, prompt tuning is yet to be fully explored. In our pilot experiments, we find that prompt tuning performs comparably with conventional full-model fine-tuning when downstream data are sufficient, whereas it performs much worse under few-shot learning settings, which may hinder the application of prompt tuning in practice. We attribute this low performance to the manner of initializing soft prompts. Therefore, in this work, we propose to pre-train prompts by adding soft prompts into the pre-training stage to obtain a better initialization. We name this Pre-trained Prompt Tuning framework PPT. To ensure the generalization of PPT, we formulate similar classification tasks into a unified task form and pre-train soft prompts for this unified task. Extensive experiments show that tuning pre-trained prompts for downstream tasks can reach or even outperform full-model fine-tuning under both full-data and few-shot settings. Our approach is effective and efficient for using large-scale PLMs in practice.
We find that existing language modeling datasets contain many near-duplicate examples and long repetitive substrings. As a result, over 1% of the unprompted output of language models trained on these datasets is copied verbatim from the training data. We develop two tools that allow us to deduplicate training datasets -- for example removing from C4 a single 61 word English sentence that is repeated over 60,000 times. Deduplication allows us to train models that emit memorized text ten times less frequently and require fewer train steps to achieve the same or better accuracy. We can also reduce train-test overlap, which affects over 4% of the validation set of standard datasets, thus allowing for more accurate evaluation. We release code for reproducing our work and performing dataset deduplication at https://github.com/google-research/deduplicate-text-datasets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا