Do you want to publish a course? Click here

Derived deformation rings allowing congruences]{Derived deformation rings allowing congruences

110   0   0.0 ( 0 )
 Added by Yichang Cai
 Publication date 2021
  fields
and research's language is English
 Authors Yichang Cai




Ask ChatGPT about the research

We generalize a result of Galatius and Venkatesh which relates the graded module of cohomology of locally symmetric spaces to the graded homotopy ring of the derived Galois deformation rings, by removing certain assumptions, and in particular by allowing congruences inside the localized Hecke algebra.



rate research

Read More

Let $mathcal{G}$ be a connected reductive almost simple group over the Witt ring $W(mathbb{F})$ for $mathbb{F}$ a finite field of characteristic $p$. Let $R$ and $R$ be complete noetherian local $W(mathbb{F})$ -algebras with residue field $mathbb{F}$. Under a mild condition on $p$ in relation to structural constants of $mathcal{G}$, we show the following results: (1) Every closed subgroup $H$ of $mathcal{G}(R)$ with full residual image $mathcal{G}(mathbb{F})$ is a conjugate of a group $mathcal{G}(A)$ for $Asubset R$ a closed subring that is local and has residue field $mathbb{F}$ . (2) Every surjective homomorphism $mathcal{G}(R)tomathcal{G}(R)$ is, up to conjugation, induced from a ring homomorphism $Rto R$. (3) The identity map on $mathcal{G}(R)$ represents the universal deformation of the representation of the profinite group $mathcal{G}(R)$ given by the reduction map $mathcal{G}(R)tomathcal{G}(mathbb{F})$. This generalizes results of Dorobisz and Eardley-Manoharmayum and of Manoharmayum, and in addition provides an abstract classification result for closed subgroups of $mathcal{G}(R)$ with residually full image. We provide an axiomatic framework to study this type of question, also for slightly more general $mathcal{G}$, and we study in the case at hand in great detail what conditions on $mathbb{F}$ or on $p$ in relation to $mathcal{G}$ are necessary for the above results to hold.
224 - J. P. Pridham 2019
We develop a framework for derived deformation theory, valid in all characteristics. This gives a model category reconciling local and global approaches to derived moduli theory. In characteristic 0, we use this to show that the homotopy categories of DGLAs and SHLAs (L infinity algebras) considered by Kontsevich, Hinich and Manetti are equivalent, and are compatible with the derived stacks of Toen--Vezzosi and Lurie. Another application is that the cohomology groups associated to any classical deformation problem (in any characteristic) admit the same operations as Andre--Quillen cohomology.
Let $H$ be a Hopf algebra, $A/B$ be an $H$-Galois extension. Let $D(A)$ and $D(B)$ be the derived categories of right $A$-modules and of right $B$-modules respectively. An object $M^cdotin D(A)$ may be regarded as an object in $D(B)$ via the restriction functor. We discuss the relations of the derived endomorphism rings $E_A(M^cdot)=op_{iinmathbb{Z}}Hom_{D(A)}(M^cdot,M^cdot[i])$ and $E_B(M^cdot)=op_{iinmathbb{Z}}Hom_{D(B)}(M^cdot,M^cdot[i])$. If $H$ is a finite dimensional semisimple Hopf algebra, then $E_A(M^cdot)$ is a graded subalgebra of $E_B(M^cdot)$. In particular, if $M$ is a usual $A$-module, a necessary and sufficient condition for $E_B(M)$ to be an $H^*$-Galois graded extension of $E_A(M)$ is obtained. As an application of the results, we show that the Koszul property is preserved under Hopf Galois graded extensions.
We give three proofs that valuation rings are derived splinters: a geometric proof using the absolute integral closure, a homological proof which reduces the problem to checking that valuation rings are splinters (which is done in the second authors PhD thesis and which we reprise here), and a proof by approximation which reduces the problem to Bhatts proof of the derived direct summand conjecture. The approximation property also shows that smooth algebras over valuation rings are splinters.
296 - Gregory Ginot , Sinan Yalin 2019
The main purpose of this article is to develop an explicit derived deformation theory of algebraic structures at a high level of generality, encompassing in a common framework various kinds of algebras (associative, commutative, Poisson...) or bialgebras (associative and coassociative, Lie, Frobenius...), that is algebraic structures parametrized by props. A central aspect is that we define and study moduli spaces of deformations of algebraic structures up to quasi-isomorphisms (and not just isotopies or isomorphisms). To do so, we implement methods coming from derived algebraic geometry, by encapsulating these deformation theories as classifying (pre)stacks with good infinitesimal properties and %derived formal geometry, by means of derived formal moduli problems and derived formal groups. In particular, we prove that the Lie algebra describing the deformation theory of an object in a given $infty$-category of dg algebras can be obtained equivalently as the tangent complex of loops on a derived quotient of this moduli space by the homotopy automorphims of this object. Moreover, we provide explicit formulae for such derived deformation problems of algebraic structures up to quasi-isomorphisms and relate them in a precise way to other standard deformation problems of algebraic structures. This relation is given by a fiber sequence of the associated dg-Lie algebras of their deformation complexes. Our results provide simultaneously a vast generalization of standard deformation theory of algebraic structures which is suitable (and needed) to set up algebraic deformation theory both at the $infty$-categorical level and at a higher level of generality than algebras over operads. In addition, we study a general criterion to compare formal moduli problems of different algebraic structures and apply our formalism to $E_n$-algebras and bialgebras.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا