Do you want to publish a course? Click here

Lower bounds for moments of the derivative of the Riemann zeta function

247   0   0.0 ( 0 )
 Added by Peng Gao
 Publication date 2021
  fields
and research's language is English
 Authors Peng Gao




Ask ChatGPT about the research

We establish in this paper sharp lower bounds for the $2k$-th moment of the derivative of the Riemann zeta function on the critical line for all real $k geq 0$.



rate research

Read More

194 - Peng Gao 2021
We study the $2k$-th discrete moment of the derivative of the Riemann zeta-function at nontrivial zeros to establish sharp lower bounds for all real $k geq 0$ under the Riemann hypothesis (RH).
We show that as $Tto infty$, for all $tin [T,2T]$ outside of a set of measure $mathrm{o}(T)$, $$ int_{-(log T)^{theta}}^{(log T)^{theta}} |zeta(tfrac 12 + mathrm{i} t + mathrm{i} h)|^{beta} mathrm{d} h = (log T)^{f_{theta}(beta) + mathrm{o}(1)}, $$ for some explicit exponent $f_{theta}(beta)$, where $theta > -1$ and $beta > 0$. This proves an extended version of a conjecture of Fyodorov and Keating (2014). In particular, it shows that, for all $theta > -1$, the moments exhibit a phase transition at a critical exponent $beta_c(theta)$, below which $f_theta(beta)$ is quadratic and above which $f_theta(beta)$ is linear. The form of the exponent $f_theta$ also differs between mesoscopic intervals ($-1<theta<0$) and macroscopic intervals ($theta>0$), a phenomenon that stems from an approximate tree structure for the correlations of zeta. We also prove that, for all $tin [T,2T]$ outside a set of measure $mathrm{o}(T)$, $$ max_{|h| leq (log T)^{theta}} |zeta(tfrac{1}{2} + mathrm{i} t + mathrm{i} h)| = (log T)^{m(theta) + mathrm{o}(1)}, $$ for some explicit $m(theta)$. This generalizes earlier results of Najnudel (2018) and Arguin et al. (2019) for $theta = 0$. The proofs are unconditional, except for the upper bounds when $theta > 3$, where the Riemann hypothesis is assumed.
We compute the asymptotics of the fourth moment of the Riemann zeta function times an arbitrary Dirichlet polynomial of length $T^{{1/11} - epsilon}$
162 - A. S. Fokas , J. Lenells 2012
We present several formulae for the large $t$ asymptotics of the Riemann zeta function $zeta(s)$, $s=sigma+i t$, $0leq sigma leq 1$, $t>0$, which are valid to all orders. A particular case of these results coincides with the classical results of Siegel. Using these formulae, we derive explicit representations for the sum $sum_a^b n^{-s}$ for certain ranges of $a$ and $b$. In addition, we present precise estimates relating this sum with the sum $sum_c^d n^{s-1}$ for certain ranges of $a, b, c, d$. We also study a two-parameter generalization of the Riemann zeta function which we denote by $Phi(u,v,beta)$, $uin mathbb{C}$, $vin mathbb{C}$, $beta in mathbb{R}$. Generalizing the methodology used in the study of $zeta(s)$, we derive asymptotic formulae for $Phi(u,v,beta)$.
110 - A. Simoniv{c} , T. Trudgian , 2020
We make explicit an argument of Heath-Brown concerning large and small gaps between nontrivial zeroes of the Riemann zeta-function, $zeta(s)$. In particular, we provide the first unconditional results on gaps (large and small) which hold for a positive proportion of zeroes. To do this we prove explicit bounds on the second and fourth power moments of $S(t+h)-S(t)$, where $S(t)$ denotes the argument of $zeta(s)$ on the critical line and $h ll 1 / log T$. We also use these moments to prove explicit results on the density of the nontrivial zeroes of $zeta(s)$ of a given multiplicity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا