No Arabic abstract
The goal of few-shot fine-grained image classification is to recognize rarely seen fine-grained objects in the query set, given only a few samples of this class in the support set. Previous works focus on learning discriminative image features from a limited number of training samples for distinguishing various fine-grained classes, but ignore one important fact that spatial alignment of the discriminative semantic features between the query image with arbitrary changes and the support image, is also critical for computing the semantic similarity between each support-query pair. In this work, we propose an object-aware long-short-range spatial alignment approach, which is composed of a foreground object feature enhancement (FOE) module, a long-range semantic correspondence (LSC) module and a short-range spatial manipulation (SSM) module. The FOE is developed to weaken background disturbance and encourage higher foreground object response. To address the problem of long-range object feature misalignment between support-query image pairs, the LSC is proposed to learn the transferable long-range semantic correspondence by a designed feature similarity metric. Further, the SSM module is developed to refine the transformed support feature after the long-range step to align short-range misaligned features (or local details) with the query features. Extensive experiments have been conducted on four benchmark datasets, and the results show superior performance over most state-of-the-art methods under both 1-shot and 5-shot classification scenarios.
Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many tasks. Most of the metric-based methods assume a single similarity measure and thus obtain a single feature space. However, if samples can simultaneously be well classified via two distinct similarity measures, the samples within a class can distribute more compactly in a smaller feature space, producing more discriminative feature maps. Motivated by this, we propose a so-called textit{Bi-Similarity Network} (textit{BSNet}) that consists of a single embedding module and a bi-similarity module of two similarity measures. After the support images and the query images pass through the convolution-based embedding module, the bi-similarity module learns feature maps according to two similarity measures of diverse characteristics. In this way, the model is enabled to learn more discriminative and less similarity-biased features from few shots of fine-grained images, such that the model generalization ability can be significantly improved. Through extensive experiments by slightly modifying established metric/similarity based networks, we show that the proposed approach produces a substantial improvement on several fine-grained image benchmark datasets. Codes are available at: https://github.com/spraise/BSNet
Few-shot image classification learns to recognize new categories from limited labelled data. Metric learning based approaches have been widely investigated, where a query sample is classified by finding the nearest prototype from the support set based on their feature similarities. A neural network has different uncertainties on its calculated similarities of different pairs. Understanding and modeling the uncertainty on the similarity could promote the exploitation of limited samples in few-shot optimization. In this work, we propose Uncertainty-Aware Few-Shot framework for image classification by modeling uncertainty of the similarities of query-support pairs and performing uncertainty-aware optimization. Particularly, we exploit such uncertainty by converting observed similarities to probabilistic representations and incorporate them to the loss for more effective optimization. In order to jointly consider the similarities between a query and the prototypes in a support set, a graph-based model is utilized to estimate the uncertainty of the pairs. Extensive experiments show our proposed method brings significant improvements on top of a strong baseline and achieves the state-of-the-art performance.
Traditional fine-grained image classification generally requires abundant labeled samples to deal with the low inter-class variance but high intra-class variance problem. However, in many scenarios we may have limited samples for some novel sub-categories, leading to the fine-grained few shot learning (FG-FSL) setting. To address this challenging task, we propose a novel method named foreground object transformation (FOT), which is composed of a foreground object extractor and a posture transformation generator. The former aims to remove image background, which tends to increase the difficulty of fine-grained image classification as it amplifies the intra-class variance while reduces inter-class variance. The latter transforms the posture of the foreground object to generate additional samples for the novel sub-category. As a data augmentation method, FOT can be conveniently applied to any existing few shot learning algorithm and greatly improve its performance on FG-FSL tasks. In particular, in combination with FOT, simple fine-tuning baseline methods can be competitive with the state-of-the-art methods both in inductive setting and transductive setting. Moreover, FOT can further boost the performances of latest excellent methods and bring them up to the new state-of-the-art. In addition, we also show the effectiveness of FOT on general FSL tasks.
Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, such as 200 subcategories belonging to the bird, which is highly challenging due to large variance in the same subcategory and small variance among different subcategories. Existing methods generally first locate the objects or parts and then discriminate which subcategory the image belongs to. However, they mainly have two limitations: (1) Relying on object or part annotations which are heavily labor consuming. (2) Ignoring the spatial relationships between the object and its parts as well as among these parts, both of which are significantly helpful for finding discriminative parts. Therefore, this paper proposes the object-part attention model (OPAM) for weakly supervised fine-grained image classification, and the main novelties are: (1) Object-part attention model integrates two level attentions: object-level attention localizes objects of images, and part-level attention selects discriminative parts of object. Both are jointly employed to learn multi-view and multi-scale features to enhance their mutual promotions. (2) Object-part spatial constraint model combines two spatial constraints: object spatial constraint ensures selected parts highly representative, and part spatial constraint eliminates redundancy and enhances discrimination of selected parts. Both are jointly employed to exploit the subtle and local differences for distinguishing the subcategories. Importantly, neither object nor part annotations are used in our proposed approach, which avoids the heavy labor consumption of labeling. Comparing with more than 10 state-of-the-art methods on 4 widely-used datasets, our OPAM approach achieves the best performance.
Metric-based few-shot fine-grained image classification (FSFGIC) aims to learn a transferable feature embedding network by estimating the similarities between query images and support classes from very few examples. In this work, we propose, for the first time, to introduce the non-linear data projection concept into the design of FSFGIC architecture in order to address the limited sample problem in few-shot learning and at the same time to increase the discriminability of the model for fine-grained image classification. Specifically, we first design a feature re-abstraction embedding network that has the ability to not only obtain the required semantic features for effective metric learning but also re-enhance such features with finer details from input images. Then the descriptors of the query images and the support classes are projected into different non-linear spaces in our proposed similarity metric learning network to learn discriminative projection factors. This design can effectively operate in the challenging and restricted condition of a FSFGIC task for making the distance between the samples within the same class smaller and the distance between samples from different classes larger and for reducing the coupling relationship between samples from different categories. Furthermore, a novel similarity measure based on the proposed non-linear data project is presented for evaluating the relationships of feature information between a query image and a support set. It is worth to note that our proposed architecture can be easily embedded into any episodic training mechanisms for end-to-end training from scratch. Extensive experiments on FSFGIC tasks demonstrate the superiority of the proposed methods over the state-of-the-art benchmarks.