Do you want to publish a course? Click here

Nuclear landscape in a mapped collective Hamiltonian from covariant density functional theory

75   0   0.0 ( 0 )
 Added by Yilong Yang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The nuclear landscape has been investigated within the triaxial relativistic Hartree-Bogoliubov theory with the PC-PK1 density functional, and the beyond-mean-field dynamical correlation energies are taken into account by a microscopically mapped five-dimensional collective Hamiltonian without additional free parameters. The effects of triaxial deformation and dynamical correlations on the nuclear landscape are analyzed. The present results provide the best description of the experimental binding energies, in particular for medium and heavy mass regions, in comparison with the results obtained previously with other state-of-the-art covariant density functionals. The inclusion of the dynamical correlation energies plays an important role in the PC-PK1 results. It is emphasized that the nuclear landscape is considerably extended by the PC-PK1 functional in comparison with the previous results with other density functionals, which may be due to the different isovector properties in the density functionals.



rate research

Read More

The neutron and proton drip lines represent the limits of the nuclear landscape. While the proton drip line is measured experimentally up to rather high $Z$-values, the location of the neutron drip line for absolute majority of elements is based on theoretical predictions which involve extreme extrapolations. The first ever systematic investigation of the location of the proton and neutron drip lines in the covariant density functional theory has been performed by employing a set of the state-of-the-art parametrizations. Calculated theoretical uncertainties in the position of two-neutron drip line are compared with those obtained in non-relativistic DFT calculations. Shell effects drastically affect the shape of two-neutron drip line. In particular, model uncertainties in the definition of two-neutron drip line at $Zsim 54, N=126$ and $Zsim 82, N=184$ are very small due to the impact of spherical shell closures at N=126 and 184.
93 - J. Peng , Q. B. Chen 2020
The three-dimensional tilted axis cranking covariant density functional theory (3D-TAC CDFT) is used to study the chiral modes in $^{135}$Nd. By modeling the motion of the nucleus in rotating mean field as the interplay between the single-particle motions of several valence particle(s) and hole(s) and the collective motion of a core-like part, a classical Routhian is extracted. This classical Routhian gives qualitative agreement with the 3D-TAC CDFT result for the critical frequency corresponding to the transition from planar to aplanar rotation. Based on this investigation a possible understanding of tilted rotation appearing in a microscopic theory is provided.
133 - K. Q. Lu , Z. X. Li , Z. P. Li 2015
We report the first global study of dynamic correlation energies (DCEs) associated with rotational motion and quadrupole shape vibrational motion in a covariant energy density functional (CEDF) for 575 even-even nuclei with proton numbers ranging from $Z=8$ to $Z=108$ by solving a five-dimensional collective Hamiltonian, the collective parameters of which are determined from triaxial relativistic mean-field plus BCS calculation using the PC-PK1 force. After taking into account these beyond mean-field DCEs, the root-mean-square (rms) deviation with respect to nuclear masses is reduced significantly down to 1.14 MeV, which is smaller than those of other successful CEDFs: NL3* (2.96 MeV), DD-ME2 (2.39 MeV), DD-ME$delta$ (2.29 MeV) and DD-PC1 (2.01 MeV). Moreover, the rms deviation for two-nucleon separation energies is reduced by $sim34%$ in comparison with cranking prescription.
Modern applications of Covariant Density Functional Theory (CDFT) are discussed. First we show a systematic investigation of fission barriers in actinide nuclei within constraint relativistic mean field theory allowing for triaxial deformations. In the second part we discuss a microscopic theory of quantum phase transitions (QPT) based on the relativistic generator coordinate method.
A systematic global investigation of differential charge radii has been performed within the CDFT framework for the first time. Theoretical results obtained with conventional covariant energy density functionals and separable pairing interaction are compared with experimental differential charge radii in the regions of the nuclear chart in which available experimental data crosses neutron shell closures at N = 28, 50, 82 and 126. The analysis of absolute differential radii of different isotopic chains and their relative properties indicate clearly that such properties are reasonably well described in model calculations in the cases when the mean-field approximation is justified. However, while the observed clusterization of differential charge radii of different isotopic chains is well described above the N=50 and N=126 shell closures, it is more difficult to reproduce it above the N=28 and N=82 shell closures because of possible deficiencies in underlying single-particle structure. The impact of the latter has been evaluated for spherical shapes and it was shown that the relative energies of the single-particle states and the patterns of their occupation with increasing neutron number have an appreciable impact on the evolution of the differential charge radii. It is shown that the kinks in the charge radii at neutron shell closures are due to the underlying single-particle structure and due to weakening or collapse of pairing at these closures. It is usually assumed that pairing is a dominant contributor to odd-even staggering (OES) in charge radii. Our analysis paints a more complicated picture. It suggests a new mechanism in which the fragmentation of the single-particle content of the ground state in odd-mass nuclei due to particle-vibration coupling provides a significant contribution to OES in charge radii.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا