No Arabic abstract
The maximum independent set problem is one of the most important problems in graph algorithms and has been extensively studied in the line of research on the worst-case analysis of exact algorithms for NP-hard problems. In the weighted version, each vertex in the graph is associated with a weight and we are going to find an independent set of maximum total vertex weight. In this paper, we design several reduction rules and a fast exact algorithm for the maximum weighted independent set problem, and use the measure-and-conquer technique to analyze the running time bound of the algorithm. Our algorithm works on general weighted graphs and it has a good running time bound on sparse graphs. If the graph has an average degree at most 3, our algorithm runs in $O^*(1.1443^n)$ time and polynomial space, improving previous running time bounds for the problem in cubic graphs using polynomial space.
We study the Maximum Independent Set of Rectangles (MISR) problem: given a set of $n$ axis-parallel rectangles, find a largest-cardinality subset of the rectangles, such that no two of them overlap. MISR is a basic geometric optimization problem with many applications, that has been studied extensively. Until recently, the best approximation algorithm for it achieved an $O(log log n)$-approximation factor. In a recent breakthrough, Adamaszek and Wiese provided a quasi-polynomial time approximation scheme: a $(1-epsilon)$-approximation algorithm with running time $n^{O(operatorname{poly}(log n)/epsilon)}$. Despite this result, obtaining a PTAS or even a polynomial-time constant-factor approximation remains a challenging open problem. In this paper we make progress towards this goal by providing an algorithm for MISR that achieves a $(1 - epsilon)$-approximation in time $n^{O(operatorname{poly}(loglog{n} / epsilon))}$. We introduce several new technical ideas, that we hope will lead to further progress on this and related problems.
Maintaining maximal independent set in dynamic graph is a fundamental open problem in graph theory and the first sublinear time deterministic algorithm was came up by Assadi, Onak, Schieber and Solomon(STOC18), which achieves $O(m^{3/4})$ amortized update time. We have two main contributions in this paper. We present a new simple deterministic algorithm with $O(m^{2/3}sqrt{log m})$ amortized update time, which improves the previous best result. And we also present the first randomized algorithm with expected $O(sqrt{m}log^{1.5}m)$ amortized time against an oblivious adversary.
This paper gives poly-logarithmic-round, distributed D-approximation algorithms for covering problems with submodular cost and monotone covering constraints (Submodular-cost Covering). The approximation ratio D is the maximum number of variables in any constraint. Special cases include Covering Mixed Integer Linear Programs (CMIP), and Weighted Vertex Cover (with D=2). Via duality, the paper also gives poly-logarithmic-round, distributed D-approximation algorithms for Fractional Packing linear programs (where D is the maximum number of constraints in which any variable occurs), and for Max Weighted c-Matching in hypergraphs (where D is the maximum size of any of the hyperedges; for graphs D=2). The paper also gives parallel (RNC) 2-approximation algorithms for CMIP with two variables per constraint and Weighted Vertex Cover. The algorithms are randomized. All of the approximation ratios exactly match those of comparable centralized algorithms.
For graphs $G$ and $H$, we say that $G$ is $H$-free if it does not contain $H$ as an induced subgraph. Already in the early 1980s Alekseev observed that if $H$ is connected, then the textsc{Max Weight Independent Set} problem (MWIS) remains textsc{NP}-hard in $H$-free graphs, unless $H$ is a path or a subdivided claw, i.e., a graph obtained from the three-leaf star by subdividing each edge some number of times (possibly zero). Since then determining the complexity of MWIS in these remaining cases is one of the most important problems in algorithmic graph theory. A general belief is that the problem is polynomial-time solvable, which is witnessed by algorithmic results for graphs excluding some small paths or subdivided claws. A more conclusive evidence was given by the recent breakthrough result by Gartland and Lokshtanov [FOCS 2020]: They proved that MWIS can be solved in quasipolynomial time in $H$-free graphs, where $H$ is any fixed path. If $H$ is an arbitrary subdivided claw, we know much less: The problem admits a QPTAS and a subexponential-time algorithm [Chudnovsky et al., SODA 2019]. In this paper we make an important step towards solving the problem by showing that for any subdivided claw $H$, MWIS is polynomial-time solvable in $H$-free graphs of bounded degree.
A graph $G$ with $n$ vertices is called an outerstring graph if it has an intersection representation of a set of $n$ curves inside a disk such that one endpoint of every curve is attached to the boundary of the disk. Given an outerstring graph representation, the Maximum Independent Set (MIS) problem of the underlying graph can be computed in $O(s^3)$ time, where $s$ is the number of segments in the representation (Keil et al., Comput. Geom., 60:19--25, 2017). If the strings are of constant size (e.g., line segments, L-shapes, etc.), then the algorithm takes $O(n^3)$ time. In this paper, we examine the fine-grained complexity of the MIS problem on some well-known outerstring representations. We show that solving the MIS problem on grounded segment and grounded square-L representations is at least as hard as solving MIS on circle graph representations. Note that no $O(n^{2-delta})$-time algorithm, $delta>0$, is known for the MIS problem on circle graphs. For the grounded string representations where the strings are $y$-monotone simple polygonal paths of constant length with segments at integral coordinates, we solve MIS in $O(n^2)$ time and show this to be the best possible under the strong exponential time hypothesis (SETH). For the intersection graph of $n$ L-shapes in the plane, we give a $(4cdot log OPT)$-approximation algorithm for MIS (where $OPT$ denotes the size of an optimal solution), improving the previously best-known $(4cdot log n)$-approximation algorithm of Biedl and Derka (WADS 2017).