Exploring stratospheric rare events with transition path theory and short simulations


Abstract in English

Extreme weather events are simultaneously the least likely and the most impactful features of the climate system, increasingly so as climate change proceeds. Extreme events are multi-faceted, highly variable processes which can be characterized in many ways: return time, worst-case severity, and predictability are all sought-after quantities for various kinds of rare events. A unifying framework is needed to define and calculate the most important quantities of interest for the purposes of near-term forecasting, long-term risk assessment, and benchmarking of reduced-order models. Here we use Transition Path Theory (TPT) for a comprehensive analysis of sudden stratospheric warming (SSW) events in a highly idealized wave-mean flow interaction system with stochastic forcing. TPT links together probabilities, dynamical behavior, and other risk metrics associated with rare events that represents their full statistical variability. At face value, fulfilling this promise demands extensive direct simulation to generate the rare event many times. Instead, we implement a highly parallel computational method that launches a large ensemble of short simulations, estimating long-timescale rare event statistics from short-term tendencies. We specifically investigate properties of SSW events including passage time distributions and large anomalies in vortex strength and heat flux. We visualize high-dimensional probability densities and currents, obtaining a nuanced picture of critical altitude-dependent interactions between waves and the mean flow that fuel SSW events. We find that TPT more faithfully captures the statistical variability between events as compared to the more conventional minimum action method.

Download