This paper proposes to use stochastic conic programming to address the challenge of large-scale wind power integration to the power system. Multiple wind farms are connected through the voltage source converter (VSC) based multi-terminal DC (VSC-MTDC) system to the power network supported by the Flexible AC Transmission System (FACTS). The optimal operation of the power network incorporating the VSC-MTDC system and FACTS devices is formulated in a stochastic conic programming framework accounting the uncertainties of the wind power generation. A methodology to generate representative scenarios of power generations from the wind farms is proposed using wind speed measurements and wind turbine models. The nonconvex transmission network constraints including the VSC-MTDC system and FACTS devices are convexified through the proposed second-order cone AC optimal power flow model (SOC-ACOPF) that can be solved to the global optimality using interior point method. In order to tackle the computational challenge due to the large number of wind power scenarios, a modified Benders decomposition algorithm (M-BDA) accelerated by parallel computation is proposed. The energy dispatch of conventional power generators is formulated as the master problem of M-BDA. Numerical results for up to 50000 wind power scenarios show that the proposed M-BDA approach to solve stochastic SOC-ACOPF outperforms the traditional single-stage (without decomposition) solution approach in both convergence capability and computational efficiency. The feasibility performance of the proposed stochastic SOC-ACOPF model is also demonstrated.