Do you want to publish a course? Click here

Generalized Huber Loss for Robust Learning and its Efficient Minimization for a Robust Statistics

154   0   0.0 ( 0 )
 Added by Kaan Gokcesu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose a generalized formulation of the Huber loss. We show that with a suitable function of choice, specifically the log-exp transform; we can achieve a loss function which combines the desirable properties of both the absolute and the quadratic loss. We provide an algorithm to find the minimizer of such loss functions and show that finding a centralizing metric is not that much harder than the traditional mean and median.

rate research

Read More

We consider a multi-armed bandit problem motivated by situations where only the extreme values, as opposed to expected values in the classical bandit setting, are of interest. We propose distribution free algorithms using robust statistics and characterize the statistical properties. We show that the provided algorithms achieve vanishing extremal regret under weaker conditions than existing algorithms. Performance of the algorithms is demonstrated for the finite-sample setting using numerical experiments. The results show superior performance of the proposed algorithms compared to the well known algorithms.
Two-dimensional singular decomposition (2DSVD) has been widely used for image processing tasks, such as image reconstruction, classification, and clustering. However, traditional 2DSVD algorithm is based on the mean square error (MSE) loss, which is sensitive to outliers. To overcome this problem, we propose a robust 2DSVD framework based on a generalized kernel risk sensitive loss (GKRSL-2DSVD) which is more robust to noise and and outliers. Since the proposed objective function is non-convex, a majorization-minimization algorithm is developed to efficiently solve it with guaranteed convergence. The proposed framework has inherent properties of processing non-centered data, rotational invariant, being easily extended to higher order spaces. Experimental results on public databases demonstrate that the performance of the proposed method on different applications significantly outperforms that of all the benchmarks.
We present a robust aggregation approach to make federated learning robust to settings when a fraction of the devices may be sending corrupted updates to the server. The proposed approach relies on a robust secure aggregation oracle based on the geometric median, which returns a robust aggregate using a constant number of calls to a regular non-robust secure average oracle. The robust aggregation oracle is privacy-preserving, similar to the secure average oracle it builds upon. We provide experimental results of the proposed approach with linear models and deep networks for two tasks in computer vision and natural language processing. The robust aggregation approach is agnostic to the level of corruption; it outperforms the classical aggregation approach in terms of robustness when the level of corruption is high, while being competitive in the regime of low corruption.
We present a hierarchical framework that combines model-based control and reinforcement learning (RL) to synthesize robust controllers for a quadruped (the Unitree Laikago). The system consists of a high-level controller that learns to choose from a set of primitives in response to changes in the environment and a low-level controller that utilizes an established control method to robustly execute the primitives. Our framework learns a controller that can adapt to challenging environmental changes on the fly, including novel scenarios not seen during training. The learned controller is up to 85~percent more energy efficient and is more robust compared to baseline methods. We also deploy the controller on a physical robot without any randomization or adaptation scheme.
This paper proposes SplitSGD, a new dynamic learning rate schedule for stochastic optimization. This method decreases the learning rate for better adaptation to the local geometry of the objective function whenever a stationary phase is detected, that is, the iterates are likely to bounce at around a vicinity of a local minimum. The detection is performed by splitting the single thread into two and using the inner product of the gradients from the two threads as a measure of stationarity. Owing to this simple yet provably valid stationarity detection, SplitSGD is easy-to-implement and essentially does not incur additional computational cost than standard SGD. Through a series of extensive experiments, we show that this method is appropriate for both convex problems and training (non-convex) neural networks, with performance compared favorably to other stochastic optimization methods. Importantly, this method is observed to be very robust with a set of default parameters for a wide range of problems and, moreover, yields better generalization performance than other adaptive gradient methods such as Adam.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا