No Arabic abstract
Quantum systems with a finite number of states at all times have been a primary element of many physical models in nuclear and elementary particle physics, as well as in condensed matter physics. Today, however, due to a practical demand in the area of developing quantum technologies, a whole set of novel tasks for improving our understanding of the structure of finite-dimensional quantum systems has appeared. In the present article we will concentrate on one aspect of such studies related to the problem of explicit parameterization of state space of an $N$-level quantum system. More precisely, we will discuss the problem of a practical description of the unitary $SU(N)$-invariant counterpart of the $N$-level state space $mathfrak{P}_N$, i.e., the unitary orbit space $mathfrak{P}_N/SU(N)$. It will be demonstrated that the combination of well-known methods of the polynomial invariant theory and convex geometry provides useful parameterization for the elements of $mathfrak{P}_N/SU(N)$. To illustrate the general situation, a detailed description of $mathfrak{P}_N/SU(N)$ for low-level systems: qubit $(N=2),,$ qutrit $(N=3),,$ quatrit $(N=4),$ - will be given.
A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d-1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl-Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level) states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space) is describable by a N-qubit vector (in a N-dimensional space). In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini-Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d=3 (i.e., N = 2), this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d=4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.
Using a braid group representation based on the Temperley-Lieb algebra, we construct braid quantum gates that could generate entangled $n$-partite $D$-level qudit states. $D$ different sets of $D^ntimes D^n$ unitary representation of the braid group generators are presented. With these generators the desired braid quantum gates are obtained. We show that the generalized GHZ states, which are maximally entangled states, can be obtained directly from these braid quantum gates without resorting to further local unitary transformations. We also point out an interesting observation, namely for a general multi-qudit state there exists a unitary braid quantum gate based on the Temperley-Lieb algebra that connects it from one of its component basis states, if the coefficient of the component state is such that the square of its norm is no less than $1/4$.
For an even qudit dimension $dgeq 2,$ we introduce a class of two-qudit states exhibiting perfect correlations/anticorrelations and prove via the generalized Gell-Mann representation that, for each two-qudit state from this class, the maximal violation of the original Bell inequality is bounded from above by the value $3/2$ - the upper bound attained on some two-qubit states. We show that the two-qudit Greenberger-Horne-Zeilinger (GHZ) state with an arbitrary even $dgeq 2$ exhibits perfect correlations/anticorrelations and belongs to the introduced two-qudit state class. These new results are important steps towards proving in general the $frac{3}{2}$ upper bound on quantum violation of the original Bell inequality. The latter would imply that similarly as the Tsirelson upper bound $2sqrt{2}$ specifies the quantum analog of the CHSH inequality for all bipartite quantum states, the upper bound $frac{3}{2}$ specifies the quantum analog of the original Bell inequality for all bipartite quantum states with perfect correlations/ anticorrelations. Possible consequences for the experimental tests on violation of the original Bell inequality are briefly discussed.
We introduce the general class of symmetric two-qubit states guaranteeing the perfect correlation or anticorrelation of Alice and Bob outcomes whenever some spin observable is measured at both sites. We prove that, for all states from this class, the maximal violation of the original Bell inequality is upper bounded by 3/2 and specify the two-qubit states where this quantum upper bound is attained. The case of two-qutrit states is more complicated. Here, for all two-qutrit states, we obtain the same upper bound 3/2 for violation of the original Bell inequality under Alice and Bob spin measurements, but we have not yet been able to show that this quantum upper bound is the least one. We discuss experimental consequences of our mathematical study.
We present a general approach for quantifying tolerance of a nonlocal N-partite state to any local noise under different classes of quantum correlation scenarios with arbitrary numbers of settings and outcomes at each site. This allows us to derive new precise bounds in d and N on noise tolerances for: (i) an arbitrary nonlocal N-qudit state; (ii) the N-qudit Greenberger-Horne-Zeilinger (GHZ) state; (iii) the N-qubit W state and the N-qubit Dicke states, and to analyse asymptotics of these precise bounds for large N and d.