Do you want to publish a course? Click here

Melting phase diagram of bubble phases in high Landau levels

187   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A low-disorder, two-dimensional electron system (2DES) subjected to a large perpendicular magnetic field and cooled to very low temperatures provides a rich platform for studies of many-body quantum phases. The magnetic field quenches the electrons kinetic energy and quantizes the energy into a set of Landau levels, allowing the Coulomb interaction to dominate. In excited Landau levels, the fine interplay between short- and long-range interactions stabilizes bubble phases, Wigner crystals with more than one electron per unit cell. Here we present the screening properties of bubble phases, probed via a simple capacitance technique where the 2DES is placed between a top and a bottom gate and the electric field penetrating through the 2DES is measured. The bubbles formed at very low temperatures screen the electric field poorly as they are pinned by the residual disorder potential, allowing a large electric field to reach the top gate. As the temperature is increased, the penetrating electric field decreases and, surprisingly, exhibits a pronounced minimum at a temperature that appears to coincide with the melting temperature of the bubble phase. We deduce a quantitative phase diagram for the transition from bubble to liquid phases for Landau level filling factors $4leq uleq5$.

rate research

Read More

For filling factors $ u$ in the range between 4.16 and 4.28, we simultaneously detect {it two} resonances in the real diagonal microwave conductivity of a two--dimensional electron system (2DES) at low temperature $T approx 35$ mK. We attribute the resonances to Wigner crystal and Bubble phases of the 2DES in higher Landau Levels. For $ u$ below and above this range, only single resonances are observed. The coexistence of both phases is taken as evidence of a first order phase transition. We estimate the transition point as $ u=4.22$.
63 - R.M. Lewis , P.D. Ye , L.W. Engel 2002
We have measured the diagonal conductivity in the microwave regime of an ultrahigh mobility two dimensional electron system. We find a sharp resonance in Re[sigma_{xx}] versus frequency when nu > 4 and the partial filling of the highest Landau level, nu^*, is ~ 1/4 or 3/4 and temperatures < 0.1 K. The resonance appears for a range of nu^* from 0.20 to 0.37 and again from 0.62 to 0.82. the peak frequency, f_{pk} changes from ~ 500 to ~ 150 as nu^* = 1/2 is approached. This range of f_{pk} shows no dependence on nu where the resonance is observed. The quality factor, Q, of the resonance is maximum at ~ nu^* = 0.25 and 0.74. We interpret the resonance as due to a pinning mode of the bubble phase crystal.
We study the radio-frequency diagonal conductivities of the anisotropic stripe phases of higher Landau levels near half integer fillings. In the hard direction, in which larger dc resistivity occurs, the spectrum exhibits a striking resonance, while in the orthogonal, easy direction, no resonance is discernable. The resonance is interpreted as a pinning mode of the stripe phase.
Developments in the physics of 2D electron systems during the last decade have revealed a new class of nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of these phenomena is magnetoresistance oscillations generated by the external forces that drive the electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in high mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations and associated zero-differential resistance states. We review the experimental manifestations of these phenomena and the unified theoretical framework for describing them in terms of a quantum kinetic equation. The survey contains also a thorough discussion of the magnetotransport properties of 2D electrons in the linear response regime, as well as an outlook on future directions, including related nonequilibrium phenomena in other 2D electron systems.
121 - I.V. Gornyi , A.D. Mirlin , 2004
Recent experiments on Coulomb drag in the quantum Hall regime have yielded a number of surprises. The most striking observations are that the Coulomb drag can become negative in high Landau levels and that its temperature dependence is non-monotonous. We develop a systematic diagrammatic theory of Coulomb drag in strong magnetic fields explaining these puzzling experiments. The theory is applicable both in the diffusive and the ballistic regimes; we focus on the experimentally relevant ballistic regime (interlayer distance $a$ smaller than the cyclotron radius $R_c$). It is shown that the drag at strong magnetic fields is an interplay of two contributions arising from different sources of particle-hole asymmetry, namely the curvature of the zero-field electron dispersion and the particle-hole asymmetry associated with Landau quantization. The former contribution is positive and governs the high-temperature increase in the drag resistivity. On the other hand, the latter one, which is dominant at low $T$, has an oscillatory sign (depending on the difference in filling factors of the two layers) and gives rise to a sharp peak in the temperature dependence at $T$ of the order of the Landau level width.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا