No Arabic abstract
Blood cell detection in microscopic images is an essential branch of medical image processing research. Since disease detection based on manual checking of blood cells is time-consuming and full of errors, testing of blood cells using object detectors with Deep Convolutional Neural Network can be regarded as a feasible solution. In this work, an object detector based on YOLOF has been proposed to detect blood cell objects such as red blood cells, white blood cells and platelets. This object detector is called TE-YOLOF, Tiny and Efficient YOLOF, and it is a One-Stage detector using dilated encoder to extract information from single-level feature maps. For increasing efficiency and flexibility, the EfficientNet Convolutional Neural Network is utilized as the backbone for the proposed object detector. Furthermore, the Depthwise Separable Convolution is applied to enhance the performance and minimize the parameters of the network. In addition, the Mish activation function is employed to increase the precision. Extensive experiments on the BCCD dataset prove the effectiveness of the proposed model, which is more efficient than other existing studies for blood cell detection.
Machine learning has endless applications in the health care industry. White blood cell classification is one of the interesting and promising area of research. The classification of the white blood cells plays an important part in the medical diagnosis. In practise white blood cell classification is performed by the haematologist by taking a small smear of blood and careful examination under the microscope. The current procedures to identify the white blood cell subtype is more time taking and error-prone. The computer aided detection and diagnosis of the white blood cells tend to avoid the human error and reduce the time taken to classify the white blood cells. In the recent years several deep learning approaches have been developed in the context of classification of the white blood cells that are able to identify but are unable to localize the positions of white blood cells in the blood cell image. Following this, the present research proposes to utilize YOLOv3 object detection technique to localize and classify the white blood cells with bounding boxes. With exhaustive experimental analysis, the proposed work is found to detect the white blood cell with 99.2% accuracy and classify with 90% accuracy.
Detecting tiny objects ( e.g., less than 20 x 20 pixels) in large-scale images is an important yet open problem. Modern CNN-based detectors are challenged by the scale mismatch between the dataset for network pre-training and the target dataset for detector training. In this paper, we investigate the scale alignment between pre-training and target datasets, and propose a new refined Scale Match method (termed SM+) for tiny person detection. SM+ improves the scale match from image level to instance level, and effectively promotes the similarity between pre-training and target dataset. Moreover, considering SM+ possibly destroys the image structure, a new probabilistic structure inpainting (PSI) method is proposed for the background processing. Experiments conducted across various detectors show that SM+ noticeably improves the performance on TinyPerson, and outperforms the state-of-the-art detectors with a significant margin.
Red blood cells are highly deformable and present in various shapes. In blood cell disorders, only a subset of all cells is morphologically altered and relevant for the diagnosis. However, manually labeling of all cells is laborious, complicated and introduces inter-expert variability. We propose an attention based multiple instance learning method to classify blood samples of patients suffering from blood cell disorders. Cells are detected using an R-CNN architecture. With the features extracted for each cell, a multiple instance learning method classifies patient samples into one out of four blood cell disorders. The attention mechanism provides a measure of the contribution of each cell to the overall classification and significantly improves the networks classification accuracy as well as its interpretability for the medical expert.
An increasing number of applications in the computer vision domain, specially, in medical imaging and remote sensing, are challenging when the goal is to classify very large images with tiny objects. More specifically, these type of classification tasks face two key challenges: $i$) the size of the input image in the target dataset is usually in the order of megapixels, however, existing deep architectures do not easily operate on such big images due to memory constraints, consequently, we seek a memory-efficient method to process these images; and $ii$) only a small fraction of the input images are informative of the label of interest, resulting in low region of interest (ROI) to image ratio. However, most of the current convolutional neural networks (CNNs) are designed for image classification datasets that have relatively large ROIs and small image size (sub-megapixel). Existing approaches have addressed these two challenges in isolation. We present an end-to-end CNN model termed Zoom-In network that leverages hierarchical attention sampling for classification of large images with tiny objects using a single GPU. We evaluate our method on two large-image datasets and one gigapixel dataset. Experimental results show that our model achieves higher accuracy than existing methods while requiring less computing resources.
The objective of this chapter is to give an insight of the mathematical modellng of hematopoiesis using multi-agent systems. Several questions may arise then: what is hematopoiesis and why is it interesting to study this problem from a mathematical point of view? Has the multi-agent system approach been the only attempt done until now? What does it bring more than other techniques? What were the results obtained? What is there left to do?