Do you want to publish a course? Click here

Motor-imagery classification model for brain-computer interface: a sparse group filter bank representation model

70   0   0.0 ( 0 )
 Added by Cancheng Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Background: Common spatial pattern (CSP) has been widely used for feature extraction in the case of motor imagery (MI) electroencephalogram (EEG) recordings and in MI classification of brain-computer interface (BCI) applications. BCI usually requires relatively long EEG data for reliable classifier training. More specifically, before using general spatial patterns for feature extraction, a training dictionary from two different classes is used to construct a compound dictionary matrix, and the representation of the test samples in the filter band is estimated as a linear combination of the columns in the dictionary matrix. New method: To alleviate the problem of sparse small sample (SS) between frequency bands. We propose a novel sparse group filter bank model (SGFB) for motor imagery in BCI system. Results: We perform a task by representing residuals based on the categories corresponding to the non-zero correlation coefficients. Besides, we also perform joint sparse optimization with constrained filter bands in three different time windows to extract robust CSP features in a multi-task learning framework. To verify the effectiveness of our model, we conduct an experiment on the public EEG dataset of BCI competition to compare it with other competitive methods. Comparison with existing methods: Decent classification performance for different subbands confirms that our algorithm is a promising candidate for improving MI-based BCI performance.

rate research

Read More

Brain Computer Interface technologies are popular methods of communication between the human brain and external devices. One of the most popular approaches to BCI is Motor Imagery. In BCI applications, the ElectroEncephaloGraphy is a very popular measurement for brain dynamics because of its non-invasive nature. Although there is a high interest in the BCI topic, the performance of existing systems is still far from ideal, due to the difficulty of performing pattern recognition tasks in EEG signals. BCI systems are composed of a wide range of components that perform signal pre-processing, feature extraction and decision making. In this paper, we define a BCI Framework, named Enhanced Fusion Framework, where we propose three different ideas to improve the existing MI-based BCI frameworks. Firstly, we include aan additional pre-processing step of the signal: a differentiation of the EEG signal that makes it time-invariant. Secondly, we add an additional frequency band as feature for the system and we show its effect on the performance of the system. Finally, we make a profound study of how to make the final decision in the system. We propose the usage of both up to six types of different classifiers and a wide range of aggregation functions (including classical aggregations, Choquet and Sugeno integrals and their extensions and overlap functions) to fuse the information given by the considered classifiers. We have tested this new system on a dataset of 20 volunteers performing motor imagery-based brain-computer interface experiments. On this dataset, the new system achieved a 88.80% of accuracy. We also propose an optimized version of our system that is able to obtain up to 90,76%. Furthermore, we find that the pair Choquet/Sugeno integrals and overlap functions are the ones providing the best results.
In this work we study the use of moderate deviation functions to measure similarity and dissimilarity among a set of given interval-valued data. To do so, we introduce the notion of interval-valued moderate deviation function and we study in particular those interval-valued moderate deviation functions which preserve the width of the input intervals. Then, we study how to apply these functions to construct interval-valued aggregation functions. We have applied them in the decision making phase of two Motor-Imagery Brain Computer Interface frameworks, obtaining better results than those obtained using other numerical and intervalar aggregations.
We introduce here the idea of Meta-Learning for training EEG BCI decoders. Meta-Learning is a way of training machine learning systems so they learn to learn. We apply here meta-learning to a simple Deep Learning BCI architecture and compare it to transfer learning on the same architecture. Our Meta-learning strategy operates by finding optimal parameters for the BCI decoder so that it can quickly generalise between different users and recording sessions -- thereby also generalising to new users or new sessions quickly. We tested our algorithm on the Physionet EEG motor imagery dataset. Our approach increased motor imagery classification accuracy between 60% to 80%, outperforming other algorithms under the little-data condition. We believe that establishing the meta-learning or learning-to-learn approach will help neural engineering and human interfacing with the challenges of quickly setting up decoders of neural signals to make them more suitable for daily-life.
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. While a closed-loop MI-based BCI system, after electroencephalogram (EEG) signal acquisition and temporal filtering, includes spatial filtering, feature engineering, and classification blocks before sending out the control signal to an external device, previous approaches only considered TL in one or two such components. This paper proposes that TL could be considered in all three components (spatial filtering, feature engineering, and classification) of MI-based BCIs. Furthermore, it is also very important to specifically add a data alignment component before spatial filtering to make the data from different subjects more consistent, and hence to facilitate subsequential TL. Offline calibration experiments on two MI datasets verified our proposal. Especially, integrating data alignment and sophisticated TL approaches can significantly improve the classification performance, and hence greatly reduces the calibration effort.
141 - Zhe Sun , Zihao Huang , Feng Duan 2020
Brain-computer interface (BCI) technologies have been widely used in many areas. In particular, non-invasive technologies such as electroencephalography (EEG) or near-infrared spectroscopy (NIRS) have been used to detect motor imagery, disease, or mental state. It has been already shown in literature that the hybrid of EEG and NIRS has better results than their respective individual signals. The fusion algorithm for EEG and NIRS sources is the key to implement them in real-life applications. In this research, we propose three fusion methods for the hybrid of the EEG and NIRS-based brain-computer interface system: linear fusion, tensor fusion, and $p$th-order polynomial fusion. Firstly, our results prove that the hybrid BCI system is more accurate, as expected. Secondly, the $p$th-order polynomial fusion has the best classification results out of the three methods, and also shows improvements compared with previous studies. For a motion imagery task and a mental arithmetic task, the best detection accuracy in previous papers were 74.20% and 88.1%, whereas our accuracy achieved was 77.53% and 90.19% . Furthermore, unlike complex artificial neural network methods, our proposed methods are not as computationally demanding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا