Do you want to publish a course? Click here

Generalized local ansatz for scale-dependent primordial non-Gaussianities and future galaxy surveys

112   0   0.0 ( 0 )
 Added by Daisuke Yamauchi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit a possible scale-dependence of local-type primordial non-Gaussianities induced by super-horizon evolution of scalar field perturbations. We develop the formulation based on $delta N$ formalism and derive the generalized form of the local-type bispectrum and also trispectrum which allows us to implement the scale-dependence and suitably compare model prediction with observational data. We propose simple but phenomenologically meaningful expressions, which encompass the information of a wide range of physically motivated models. We also formulate large-scale power spectrum and bispectrum of biased objects in the presence of the scale-dependent primordial non-Gaussianities. We perform the Fisher analysis for future galaxy surveys and give the projected constraints on the parameters of the generalized local-form of primordial non-Gaussianities.



rate research

Read More

We study the constraining power on primordial non-Gaussianity of future surveys of the large-scale structure of the Universe for both near-term surveys (such as the Dark Energy Survey - DES) as well as longer term projects such as Euclid and WFIRST. Specifically we perform a Fisher matrix analysis forecast for such surveys, using DES-like and Euclid-like configurations as examples, and take account of any expected photometric and spectroscopic data. We focus on two-point statistics and we consider three observables: the 3D galaxy power spectrum in redshift space, the angular galaxy power spectrum, and the projected weak-lensing shear power spectrum. We study the effects of adding a few extra parameters to the basic LCDM set. We include the two standard parameters to model the current value for the dark energy equation of state and its time derivative, w_0, w_a, and we account for the possibility of primordial non-Gaussianity of the local, equilateral and orthogonal types, of parameter fNL and, optionally, of spectral index n_fNL. We present forecasted constraints on these parameters using the different observational probes. We show that accounting for models that include primordial non-Gaussianity does not degrade the constraint on the standard LCDM set nor on the dark-energy equation of state. By combining the weak lensing data and the information on projected galaxy clustering, consistently including all two-point functions and their covariance, we find forecasted marginalised errors sigma (fNL) ~ 3, sigma (n_fNL) ~ 0.12 from a Euclid-like survey for the local shape of primordial non-Gaussianity, while the orthogonal and equilateral constraints are weakened for the galaxy clustering case, due to the weaker scale-dependence of the bias. In the lensing case, the constraints remain instead similar in all configurations.
Fluctuations with wavelengths larger than the volume of a galaxy survey affect the measurement of the galaxy power spectrum within the survey itself. In the presence of local Primordial Non- Gaussianities (PNG), in addition to the super-sample matter density and tidal fluctuations, the large-scale gravitational potential also induces a modulation of the observed power spectrum. In this work we investigate this modulation by computing for the first time the response of the redshift-space galaxy power spectrum to the presence of a long wavelength gravitational potential, fully accounting for the stochastic contributions. For biased tracers new response functions arise due to couplings between the small-scale fluctuations in the density, velocity and gravitational fields, the latter through scale dependent bias operators, and the large-scale gravitational potential. We study the impact of the super-sample modes on the measurement of the amplitude of the primordial bispectrum of the local-shape, $f_{rm NL}^{rm loc}$, accounting for modulations of both the signal and the covariance of the galaxy power spectrum by the long modes. Considering DESI-like survey specifications, we show that in most cases super-sample modes cause little or no degradation of the constraints, and could actually reduce the errorbars on $f_{rm NL}^{rm loc}$ by (10 - 30)%, if external information on the bias parameters is available.
We investigate expected constraints on equilateral-type primordial non-Gaussianities from future/ongoing imaging surveys, making use of the fact that they enhance the halo/galaxy bispectrum on large scales. As model parameters to be constrained, in addition to $f_{rm NL}^{rm equil}$, which is related to the primordial bispectrum, we consider $g_{rm NL}^{(partial sigma)^4}$, which is related to the primordial trispectrum that appeared in the effective field theory of inflation. After calculating the angular bispectra of the halo/galaxy clustering and weak gravitational lensing based on the integrated perturbation theory, we perform Fisher matrix analysis for three representative surveys. We find that among the three surveys, the tightest constraints come from Large Synoptic Survey Telescope ; its expected $1sigma$ errors on $f_{rm NL}^{rm equil}$ and $g_{rm NL}^{(partial sigma)^4}$ are respectively given by $7.0 times 10^2$ and $4.9 times 10^7$. Although this constraint is somewhat looser than the one from the current cosmic microwave background observation, since we obtain it independently, we can use this constraint as a cross check. We also evaluate the uncertainty with our results caused by using several approximations and discuss the possibility to obtain tighter constraint on $f_{rm NL}^{rm equil}$ and $g_{rm NL}^{(partial sigma)^4}$.
We re-analyse current single-field inflationary models related to primordial black holes formation. We do so by taking into account recent developments on the estimations of their abundances and the influence of non-gaussianities. We show that, for all of them, the gaussian approximation, which is typically used to estimate the primordial black holes abundances, fails. However, in the case in which the inflaton potential has an inflection point, the contribution of non-gaussianities is only perturbative. Finally, we infer that only models featuring an inflection point in the inflationary potential, might predict, with a very good approximation, the desired abundances by the sole use of the gaussian statistics.
533 - Hael Collins 2011
These notes present a detailed introduction to Maldacenas calculation of the three-point function generated by the simplest class of inflationary models: those with a single inflaton field whose potential satisfies the slow-roll conditions and whose quantum fluctuations start in the asymptotic Bunch-Davies vacuum state. The three-point function should be the most readily observed evidence for non-Gaussianities amongst the primordial fluctuations produced by inflation. In these inflationary theories the non-Gaussianities are predicted to be extremely small, being naturally suppressed by the small slow-roll parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا