Do you want to publish a course? Click here

SPORK That Spectrum: Increasing Detection Significances from High-Resolution Exoplanet Spectroscopy with Novel Smoothing Algorithms

150   0   0.0 ( 0 )
 Added by Kaitlin Rasmussen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spectroscopic studies of planets outside of our own solar system provide some of the most crucial information about their formation, evolution, and atmospheric properties. In ground-based spectroscopy, the process of extracting the planets signal from the stellar and telluric signal has proven to be the most difficult barrier to accurate atmospheric information. However, with novel normalization and smoothing methods, this barrier can be minimized and the detection significance dramatically increased over existing methods. In this paper, we take two examples of CRIRES emission spectroscopy taken of HD 209458 b and HD 179949 b and apply SPORK (SPectral cOntinuum Refinement for telluriKs) and iterative smoothing to boost the detection significance from 5.78 to 9.71 sigma and from 4.19 sigma to 5.90 sigma, respectively. These methods, which largely address systematic quirks introduced by imperfect detectors or reduction pipelines, can be employed in a wide variety of scenarios, from archival data sets to simulations of future spectrographs.



rate research

Read More

Using high-resolution ground-based transmission spectroscopy to probe exoplanetary atmospheres is difficult due to the inherent telluric contamination from absorption in Earths atmosphere. A variety of methods have previously been used to remove telluric features in the optical regime and calculate the planetary transmission spectrum. In this paper we present and compare two such methods, specifically focusing on Na detections using high-resolution optical transmission spectra: (1) calculating the telluric absorption empirically based on the airmass, and (2) using a model of the Earths transmission spectrum. We test these methods on the transmission spectrum of the hot Jupiter HD 189733 b using archival data obtained with the HARPS spectrograph during three transits. Using models for Centre-to-Limb Variation and the Rossiter-McLaughlin effect, spurious signals which are imprinted within the transmission spectrum are reduced. We find that correcting tellurics with an atmospheric model of the Earth is more robust and produces consistent results when applied to data from different nights with changing atmospheric conditions. We confirm the detection of sodium in the atmosphere of HD 189733 b, with doublet line contrasts of -0.64 $pm$ 0.07 % (D2) and -0.53 $pm$ 0.07 % (D1). The average line contrast corresponds to an effective photosphere in the Na line located around 1.13 R$_p$. We also confirm an overall blueshift of the line centroids corresponding to net atmospheric eastward winds with a speed of 1.8 $pm$ 1.2 km/s. Our study highlights the importance of accurate telluric removal for consistent and reliable characterisation of exoplanetary atmospheres using high-resolution transmission spectroscopy.
100 - J. V. Seidel 2019
Context. The atmosphere of exoplanets has been studied extensively in recent years, using numerical models to retrieve chemical composition, dynamical circulation or temperature from data. One of the best observational probes in transmission is the sodium doublet, due to its large cross section. However, modelling the shape of the planetary sodium lines has proven to be challenging. Models with different assumptions regarding the atmosphere have been employed to fit the lines in the literature, yet statistically sound direct comparisons of different models are needed to paint a clear picture. Aims. We will compare different wind and temperature patterns and provide a tool to distinguish them driven by their best fit for the sodium transmission spectrum of the hot Jupiter HD 189733b. We parametrise different possible wind patterns already tested in literature and introduce the new option of an upwards driven vertical wind. Methods. We construct a forward model where the wind speed, wind geometry and temperature are injected into the calculation of the transmission spectrum. We embed this forward model in a nested sampling retrieval code to rank the models via their Bayesian evidence. Results. We retrieve a best-fit to the HD 189733b data for vertical upward winds $|vec{v}_{mathrm{ver}}(mathrm{mean})|=40pm4$ km/s at altitudes above $10^{-6}$ bar. With the current data from HARPS, we cannot distinguish wind patterns for higher pressure atmospheric layers. Conclusions. We show that vertical upwards winds in the upper atmosphere are a possible explanation for the broad sodium signature in hot Jupiters. We highlight other influences on the width of the doublet and explore strong magnetic fields acting on the lower atmosphere as one possible origin of the retrieved wind speed.
We report detections of atomic species in the atmosphere of MASCARA-2 b, using the first transit observations obtained with the newly commissioned EXPRES spectrograph. EXPRES is a highly stabilised optical echelle spectrograph, designed to detect stellar reflex motions with amplitudes down to 30 cm/s, and was recently deployed at the Lowell Discovery Telescope. By analysing the transmission spectrum of the ultra-hot Jupiter MASCARA-2 b using the cross-correlation method, we confirm previous detections of Fe I, Fe II and Na I, which likely originate in the upper regions of the inflated atmosphere. In addition, we report significant detections of Mg I and Cr II. The absorption strengths change slightly with time, possibly indicating different temperatures and chemistry in the day-side and night-side terminators. Using the effective stellar line-shape variation induced by the transiting planet, we constrain the projected spin-orbit misalignment of the system to $1.6pm3.1$ degrees, consistent with an aligned orbit. We demonstrate that EXPRES joins a suite of instruments capable of phase-resolved spectroscopy of exoplanet atmospheres.
[Abridged] Recently, there have been a series of detections of molecules in the atmospheres of extrasolar planets using high spectral resolution (R~100,000) observations, mostly using the CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES) on the Very Large Telescope. These measurements are able to resolve molecular bands into individual absorption lines. Observing many lines simultaneously as their Doppler shift changes with time allows the detection of specific molecules in the atmosphere of the exoplanet. We performed simulations of high-resolution CRIRES observations of a planets thermal emission and transit between 1-5 micron and performed a cross-correlation analysis on these results to assess how well the planet signal can be extracted. We also simulated day-side and night-side spectra at high spectral resolution for planets with and without a day-side temperature inversion, based on the cases of HD 189733b and HD 209458b. Several small wavelength regions in the L-band promise to yield cross-correlation signals from the thermal emission of hot Jupiters that can exceed those of the current detections by up to a factor of 2-3 for the same integration time. For transit observations, the H-band is also attractive, with the H, K, and L-band giving cross-correlation signals of similar strength. High-resolution night-side spectra of hot Jupiters can give cross-correlation signals as high as the day-side, or even higher. We show that there are many new possibilities for high-resolution observations of exoplanet atmospheres that have expected planet signals at least as high as those already detected. Hence, high-resolution observations at well-chosen wavelengths and at different phases can improve our knowledge about hot Jupiter atmospheres significantly, already with currently available instrumentation.
KMOS (K-Band Multi Object Spectrograph) is a novel integral field spectrograph installed in the VLTs ANTU unit. The instrument offers an ability to observe 24 2.8$times$2.8 sub-fields positionable within a 7.2 patrol field, each sub-field producing a spectrum with a 14$times$14-pixel spatial resolution. The main science drivers for KMOS are the study of galaxies, star formation, and molecular clouds, but its ability to simultaneously measure spectra of multiple stars makes KMOS an interesting instrument for exoplanet atmosphere characterization via transmission spectroscopy. We set to test whether transmission spectroscopy is practical with KMOS, and what are the conditions required to achieve the photometric precision needed, based on observations of a partial transit of WASP-19b, and full transits of GJ 1214b and HD 209458b. Our analysis uses the simultaneously observed comparison stars to reduce the effects from instrumental and atmospheric sources, and Gaussian processes to model the residual systematics. We show that KMOS can, in theory, deliver the photometric precision required for transmission spectroscopy. However, this is shown to require a) pre-imaging to ensure accurate centering and b) a very stable night with optimal observing conditions (seeing $sim$0.8). Combining these two factors with the need to observe several transits, each with a sufficient out-of-transit baseline (and with the fact that similar or better precision can be reached with telescopes and instruments with smaller pressure,) we conclude that transmission spectroscopy is not the optimal science case to take advantage of the abilities offered by KMOS and VLT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا