It is known that entanglement can be converted to work in quantum composite systems. In this paper we consider a quench protocol for two initially independent reservoirs $A$ and $B$ described by the quantum thermal states. For a free fermion model at low temperatures, the von Neumann entropy of each reservoir increases once the reservoirs are coupled. At the moment of decoupling there is an energy transfer to the system in the amount set by the von Neumann entropy accumulated during joint evolution of $A$ and $B$. This energy transfer appears as work produced by the quench to decouple the reservoirs. Once the reservoirs are disconnected, the information about their mutual correlations $-$ von Neumann entropy $-$ is stored in the energy increment of each reservoir. This result provides a possibility of a direct readout of quantum correlations at low temperature.