It is known that entanglement can be converted to work in quantum composite systems. In this paper we consider a quench protocol for two initially independent reservoirs $A$ and $B$ described by the quantum thermal states. For a free fermion model at low temperatures, the von Neumann entropy of each reservoir increases once the reservoirs are coupled. At the moment of decoupling there is an energy transfer to the system in the amount set by the von Neumann entropy accumulated during joint evolution of $A$ and $B$. This energy transfer appears as work produced by the quench to decouple the reservoirs. Once the reservoirs are disconnected, the information about their mutual correlations $-$ von Neumann entropy $-$ is stored in the energy increment of each reservoir. This result provides a possibility of a direct readout of quantum correlations at low temperature.
We present a simple derivation of the Hellmann-Feynman theorem at finite temperature. We illustrate its validity by considering three relevant examples which can be used in quantum mechanics lectures: the one-dimensional harmonic oscillator, the one-dimensional Ising model and the Lipkin model. We show that the Hellmann-Feynman theorem allows one to calculate expectation values of operators that appear in the Hamiltonian. This is particularly useful when the total free-energy is available, but there is not direct access to the thermal average of the operators themselves.
The non-equilibrium response of a quantum many-body system defines its fundamental transport properties and how initially localized quantum information spreads. However, for long-range-interacting quantum systems little is known. We address this issue by analyzing a local quantum quench in the long-range Ising model in a transverse field, where interactions decay as a variable power-law with distance $propto r^{-alpha}$, $alpha>0$. Using complementary numerical and analytical techniques, we identify three dynamical regimes: short-range-like with an emerging light cone for $alpha>2$; weakly long-range for $1<alpha<2$ without a clear light cone but with a finite propagation speed of almost all excitations; and fully non-local for $alpha<1$ with instantaneous transmission of correlations. This last regime breaks generalized Lieb--Robinson bounds and thus locality. Numerical calculation of the entanglement spectrum demonstrates that the usual picture of propagating quasi-particles remains valid, allowing an intuitive interpretation of our findings via divergences of quasi-particle velocities. Our results may be tested in state-of-the-art trapped-ion experiments.
We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, even those that do not commute with each other, without losing any of its properties. It is well-defined out of equilibrium, and for some coarse-grainings it generically rises to the correct thermodynamic value even in a genuinely isolated quantum system. The quantity contains several other entropy definitions as special cases, it has interesting information-theoretic interpretations, and mathematical properties -- such as extensivity and upper and lower bounds -- suitable for an entropy. Here we describe and provide proofs for many of its properties, discuss its interpretation and connection to other quantities, and provide numerous simulations and analytic arguments supporting the claims of its relationship to thermodynamic entropy. This quantity may thus provide a clear and well-defined foundation on which to build a satisfactory understanding of the second thermodynamical law in quantum mechanics.
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.
In this paper, we investigate and compare two well-developed definitions of entropy relevant for describing the dynamics of isolated quantum systems: bipartite entanglement entropy and observational entropy. In a model system of interacting particles in a one-dimensional lattice, we numerically solve for the full quantum behavior of the system. We characterize the fluctuations, and find the maximal, minimal, and typical entropy of each type that the system can eventually attain through its evolution. While both entropies are low for some special configurations and high for more generic ones, there are several fundamental differences in their behavior. Observational entropy behaves in accord with classical Boltzmann entropy (e.g. equilibrium is a condition of near-maximal entropy and uniformly distributed particles, and minimal entropy is a very compact configuration). Entanglement entropy is rather different: minimal entropy empties out one partition while maximal entropy apportions the particles between the partitions, and neither is typical. Beyond these qualitative results, we characterize both entropies and their fluctuations in some detail as they depend on temperature, particle number, and box size.
N. V. Gnezdilov
,A. I. Pavlov
,V. Ohanesjan
.
(2021)
.
"Information to energy conversion in quantum composite systems at finite temperature"
.
Nikolay Gnezdilov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا