Do you want to publish a course? Click here

Multivariate Levy Adaptive B-Spline Regression

84   0   0.0 ( 0 )
 Added by Sewon Park
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We develop a fully Bayesian nonparametric regression model based on a Levy process prior named MLABS (Multivariate Levy Adaptive B-Spline regression) model, a multivariate version of the LARK (Levy Adaptive Regression Kernels) models, for estimating unknown functions with either varying degrees of smoothness or high interaction orders. Levy process priors have advantages of encouraging sparsity in the expansions and providing automatic selection over the number of basis functions. The unknown regression function is expressed as a weighted sum of tensor product of B-spline basis functions as the elements of an overcomplete system, which can deal with multi-dimensional data. The B-spline basis can express systematically functions with varying degrees of smoothness. By changing a set of degrees of the tensor product basis function, MLABS can adapt the smoothness of target functions due to the nice properties of B-spline bases. The local support of the B-spline basis enables the MLABS to make more delicate predictions than other existing methods in the two-dimensional surface data. Experiments on various simulated and real-world datasets illustrate that the MLABS model has comparable performance on regression and classification problems. We also show that the MLABS model has more stable and accurate predictive abilities than state-of-the-art nonparametric regression models in relatively low-dimensional data.



rate research

Read More

The estimation of functions with varying degrees of smoothness is a challenging problem in the nonparametric function estimation. In this paper, we propose the LABS (L{e}vy Adaptive B-Spline regression) model, an extension of the LARK models, for the estimation of functions with varying degrees of smoothness. LABS model is a LARK with B-spline bases as generating kernels. The B-spline basis consists of piecewise k degree polynomials with k-1 continuous derivatives and can express systematically functions with varying degrees of smoothness. By changing the orders of the B-spline basis, LABS can systematically adapt the smoothness of functions, i.e., jump discontinuities, sharp peaks, etc. Results of simulation studies and real data examples support that this model catches not only smooth areas but also jumps and sharp peaks of functions. The proposed model also has the best performance in almost all examples. Finally, we provide theoretical results that the mean function for the LABS model belongs to the certain Besov spaces based on the orders of the B-spline basis and that the prior of the model has the full support on the Besov spaces.
In fitting data with a spline, finding the optimal placement of knots can significantly improve the quality of the fit. However, the challenging high-dimensional and non-convex optimization problem associated with completely free knot placement has been a major roadblock in using this approach. We present a method that uses particle swarm optimization (PSO) combined with model selection to address this challenge. The problem of overfitting due to knot clustering that accompanies free knot placement is mitigated in this method by explicit regularization, resulting in a significantly improved performance on highly noisy data. The principal design choices available in the method are delineated and a statistically rigorous study of their effect on performance is carried out using simulated data and a wide variety of benchmark functions. Our results demonstrate that PSO-based free knot placement leads to a viable and flexible adaptive spline fitting approach that allows the fitting of both smooth and non-smooth functions.
89 - Wenjia Wang , Yi-Hui Zhou 2020
In the multivariate regression, also referred to as multi-task learning in machine learning, the goal is to recover a vector-valued function based on noisy observations. The vector-valued function is often assumed to be of low rank. Although the multivariate linear regression is extensively studied in the literature, a theoretical study on the multivariate nonlinear regression is lacking. In this paper, we study reduced rank multivariate kernel ridge regression, proposed by cite{mukherjee2011reduced}. We prove the consistency of the function predictor and provide the convergence rate. An algorithm based on nuclear norm relaxation is proposed. A few numerical examples are presented to show the smaller mean squared prediction error comparing with the elementwise univariate kernel ridge regression.
We present a new Bayesian nonparametric approach to estimating the spectral density of a stationary time series. A nonparametric prior based on a mixture of B-spline distributions is specified and can be regarded as a generalization of the Bernstein polynomial prior of Petrone (1999a,b) and Choudhuri et al. (2004). Whittles likelihood approximation is used to obtain the pseudo-posterior distribution. This method allows for a data-driven choice of the number of mixture components and the location of knots. Posterior samples are obtained using a Metropolis-within-Gibbs Markov chain Monte Carlo algorithm, and mixing is improved using parallel tempering. We conduct a simulation study to demonstrate that for complicated spectral densities, the B-spline prior provides more accurate Monte Carlo estimates in terms of $L_1$-error and uniform coverage probabilities than the Bernstein polynomial prior. We apply the algorithm to annual mean sunspot data to estimate the solar cycle. Finally, we demonstrate the algorithms ability to estimate a spectral density with sharp features, using real gravitational wave detector data from LIGOs sixth science run, recoloured to match the Advanced LIGO target sensitivity.
79 - Shan Yu , Guannan Wang , Li Wang 2021
Motivated by recent data analyses in biomedical imaging studies, we consider a class of image-on-scalar regression models for imaging responses and scalar predictors. We propose using flexible multivariate splines over triangulations to handle the irregular domain of the objects of interest on the images, as well as other characteristics of images. The proposed estimators of the coefficient functions are proved to be root-n consistent and asymptotically normal under some regularity conditions. We also provide a consistent and computationally efficient estimator of the covariance function. Asymptotic pointwise confidence intervals and data-driven simultaneous confidence corridors for the coefficient functions are constructed. Our method can simultaneously estimate and make inferences on the coefficient functions while incorporating spatial heterogeneity and spatial correlation. A highly efficient and scalable estimation algorithm is developed. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed method, which is then applied to the spatially normalized positron emission tomography data of the Alzheimers Disease Neuroimaging Initiative.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا