Do you want to publish a course? Click here

Second order accurate Dirichlet boundary conditions for linear nonlocal diffusion problems

113   0   0.0 ( 0 )
 Added by Hwi Lee
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We present an approach to handle Dirichlet type nonlocal boundary conditions for nonlocal diffusion models with a finite range of nonlocal interactions. Our approach utilizes a linear extrapolation of prescribed boundary data. A novelty is, instead of using local gradients of the boundary data that are not available a priori, we incorporate nonlocal gradient operators into the formulation to generalize the finite differences-based methods which are pervasive in literature; our particular choice of the nonlocal gradient operators is based on the interplay between a constant kernel function and the geometry of nonlocal interaction neighborhoods. Such an approach can be potentially useful to address similar issues in peridynamics, smoothed particle hydrodynamics and other nonlocal models. We first show the well-posedness of the newly formulated nonlocal problems and then analyze their asymptotic convergence to the local limit as the nonlocality parameter shrinks to zero. We justify the second order localization rate, which is the optimal order attainable in the absence of physical boundaries.



rate research

Read More

72 - Nick Lindemulder 2018
In this paper we consider second order parabolic partial differential equations subject to the Dirichlet boundary condition on smooth domains. We establish weighted $L_{q}$-maximal regularity in weighted Triebel-Lizorkin spaces for such parabolic problems with inhomogeneous boundary data. The weights that we consider are power weights in time and space, and yield flexibility in the optimal regularity of the initial-boundary data, allow to avoid compatibility conditions at the boundary and provide a smoothing effect. In particular, we can treat rough inhomogeneous boundary data.
This paper derives physically meaningful boundary conditions for fractional diffusion equations, using a mass balance approach. Numerical solutions are presented, and theoretical properties are reviewed, including well-posedness and steady state solutions. Absorbing and reflecting boundary conditions are considered, and illustrated through several examples. Reflecting boundary conditions involve fractional derivatives. The Caputo fractional derivative is shown to be unsuitable for modeling fractional diffusion, since the resulting boundary value problem is not positivity preserving.
This is the first part of our study of inertial manifolds for the system of 1D reaction-diffusion-advection equations which is devoted to the case of Dirichlet or Neumann boundary conditions. Although this problem does not initially possess the spectral gap property, it is shown that this property is satisfied after the proper non-local change of the dependent variable. The case of periodic boundary conditions where the situation is principally different and the inertial manifold may not exist is considered in the second part of our study.
85 - Yihong Du , Wenjie Ni 2020
We show how the Stefan type free boundary problem with random diffusion in one space dimension can be approximated by the corresponding free boundary problem with nonlocal diffusion. The approximation problem is a slightly modified version of the nonlocal diffusion problem with free boundaries considered in [4,8]. The proof relies on the introduction of several auxiliary free boundary problems and constructions of delicate upper and lower solutions for these problems. As usual, the approximation is achieved by choosing the kernel function in the nonlocal diffusion term of the form $J_epsilon(x)=frac 1epsilon J(frac xepsilon)$ for small $epsilon>0$, where $J(x)$ has compact support. We also give an estimate of the error term of the approximation by some positive power of $epsilon$.
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bsubset mathbb{R}^d$, a bounded open set with locally Lipchitz boundary, and with $ u$ as the unit outer normal. The function $G$ is Lipschitz continuous and nondecreasing, while $k(x)$ is diagonal matrix. We show that any two weak entropy solutions $u$ and $v$ satisfy $Vert{u(t)-v(t)}Vert_{L^1(B)}le Vert{u|_{t=0}-v|_{t=0}}Vert_{L^1(B)}e^{Ct}$, for almost every $tge 0$, and a constant $C=C(k,G,B)$. If we restrict to the case when the entries $k_i$ of $k$ depend only on the corresponding component, $k_i=k_i(x_i)$, we show that there exists an entropy solution, thus establishing in this case that the problem is well-posed in the sense of Hadamard.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا