Do you want to publish a course? Click here

A survey on Bayesian inference for Gaussian mixture model

70   0   0.0 ( 0 )
 Added by Jun Lu
 Publication date 2021
and research's language is English
 Authors Jun Lu




Ask ChatGPT about the research

Clustering has become a core technology in machine learning, largely due to its application in the field of unsupervised learning, clustering, classification, and density estimation. A frequentist approach exists to hand clustering based on mixture model which is known as the EM algorithm where the parameters of the mixture model are usually estimated into a maximum likelihood estimation framework. Bayesian approach for finite and infinite Gaussian mixture model generates point estimates for all variables as well as associated uncertainty in the form of the whole estimates posterior distribution. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in Bayesian inference for finite and infinite Gaussian mixture model in order to seamlessly introduce their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning this field and given the paucity of scope to present this discussion, e.g., the separated analysis of the generation of Dirichlet samples by stick-breaking and Polyas Urn approaches. We refer the reader to literature in the field of the Dirichlet process mixture model for a much detailed introduction to the related fields. Some excellent examples include (Frigyik et al., 2010; Murphy, 2012; Gelman et al., 2014; Hoff, 2009). This survey is primarily a summary of purpose, significance of important background and techniques for Gaussian mixture model, e.g., Dirichlet prior, Chinese restaurant process, and most importantly the origin and complexity of the methods which shed light on their modern applications. The mathematical prerequisite is a first course in probability. Other than this modest background, the development is self-contained, with rigorous proofs provided throughout.



rate research

Read More

We present a novel Bayesian method, referred to as Blobby3D, to infer gas kinematics that mitigates the effects of beam smearing for observations using Integral Field Spectroscopy (IFS). The method is robust for regularly rotating galaxies despite substructure in the gas distribution. Modelling the gas substructure within the disk is achieved by using a hierarchical Gaussian mixture model. To account for beam smearing effects, we construct a modelled cube that is then convolved per wavelength slice by the seeing, before calculating the likelihood function. We show that our method can model complex gas substructure including clumps and spiral arms. We also show that kinematic asymmetries can be observed after beam smearing for regularly rotating galaxies with asymmetries only introduced in the spatial distribution of the gas. We present findings for our method applied to a sample of 20 star-forming galaxies from the SAMI Galaxy Survey. We estimate the global H$alpha$ gas velocity dispersion for our sample to be in the range $bar{sigma}_v sim $[7, 30] km s$^{-1}$. The relative difference between our approach and estimates using the single Gaussian component fits per spaxel is $Delta bar{sigma}_v / bar{sigma}_v = - 0.29 pm 0.18$ for the H$alpha$ flux-weighted mean velocity dispersion.
Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications. However, most existing methods process MTSs individually, and do not leverage the dynamic distributions underlying the MTSs, leading to sub-optimal results when the sparsity is high. To address this challenge, we propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations, to achieve robust modeling. It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures, and is used for emitting timeseries. The generative model is parameterized by neural networks. A structured inference network is also designed for enabling inductive analysis. A gating mechanism is further introduced to dynamically tune the Gaussian mixture distributions. Extensive experimental results on a variety of real-life datasets demonstrate the effectiveness of our method.
The right to be forgotten has been legislated in many countries but the enforcement in machine learning would cause unbearable costs: companies may need to delete whole models learned from massive resources due to single individual requests. Existing works propose to remove the knowledge learned from the requested data via its influence function which is no longer naturally well-defined in Bayesian inference. This paper proposes a {it Bayesian inference forgetting} (BIF) framework to realize the right to be forgotten in Bayesian inference. In the BIF framework, we develop forgetting algorithms for variational inference and Markov chain Monte Carlo. We show that our algorithms can provably remove the influence of single datums on the learned models. Theoretical analysis demonstrates that our algorithms have guaranteed generalizability. Experiments of Gaussian mixture models on the synthetic dataset and Bayesian neural networks on the real-world data verify the feasibility of our methods. The source code package is available at url{https://github.com/fshp971/BIF}.
This paper proposes a dual-supervised uncertainty inference (DS-UI) framework for improving Bayesian estimation-based uncertainty inference (UI) in deep neural network (DNN)-based image recognition. In the DS-UI, we combine the classifier of a DNN, i.e., the last fully-connected (FC) layer, with a mixture of Gaussian mixture models (MoGMM) to obtain an MoGMM-FC layer. Unlike existing UI methods for DNNs, which only calculate the means or modes of the DNN outputs distributions, the proposed MoGMM-FC layer acts as a probabilistic interpreter for the features that are inputs of the classifier to directly calculate the probability density of them for the DS-UI. In addition, we propose a dual-supervised stochastic gradient-based variational Bayes (DS-SGVB) algorithm for the MoGMM-FC layer optimization. Unlike conventional SGVB and optimization algorithms in other UI methods, the DS-SGVB not only models the samples in the specific class for each Gaussian mixture model (GMM) in the MoGMM, but also considers the negative samples from other classes for the GMM to reduce the intra-class distances and enlarge the inter-class margins simultaneously for enhancing the learning ability of the MoGMM-FC layer in the DS-UI. Experimental results show the DS-UI outperforms the state-of-the-art UI methods in misclassification detection. We further evaluate the DS-UI in open-set out-of-domain/-distribution detection and find statistically significant improvements. Visualizations of the feature spaces demonstrate the superiority of the DS-UI.
In this paper we introduce the ice-start problem, i.e., the challenge of deploying machine learning models when only little or no training data is initially available, and acquiring each feature element of data is associated with costs. This setting is representative for the real-world machine learning applications. For instance, in the health-care domain, when training an AI system for predicting patient metrics from lab tests, obtaining every single measurement comes with a high cost. Active learning, where only the label is associated with a cost does not apply to such problem, because performing all possible lab tests to acquire a new training datum would be costly, as well as unnecessary due to redundancy. We propose Icebreaker, a principled framework to approach the ice-start problem. Icebreaker uses a full Bayesian Deep Latent Gaussian Model (BELGAM) with a novel inference method. Our proposed method combines recent advances in amortized inference and stochastic gradient MCMC to enable fast and accurate posterior inference. By utilizing BELGAMs ability to fully quantify model uncertainty, we also propose two information acquisition functions for imputation and active prediction problems. We demonstrate that BELGAM performs significantly better than the previous VAE (Variational autoencoder) based models, when the data set size is small, using both machine learning benchmarks and real-world recommender systems and health-care applications. Moreover, based on BELGAM, Icebreaker further improves the performance and demonstrate the ability to use minimum amount of the training data to obtain the highest test time performance.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا