No Arabic abstract
We introduce a general method, named the h-function method, to unify the constructions of level-alpha exact test and 1-alpha exact confidence interval. Using this method, any confidence interval is improved as follows: i) an approximate interval, including a point estimator, is modified to an exact interval; ii) an exact interval is refined to be an interval that is a subset of the previous one. Two real datasets are used to illustrate the method.
The recent paper Simple confidence intervals for MCMC without CLTs by J.S. Rosenthal, showed the derivation of a simple MCMC confidence interval using only Chebyshevs inequality, not CLT. That result required certain assumptions about how the estimator bias and variance grow with the number of iterations $n$. In particular, the bias is $o(1/sqrt{n})$. This assumption seemed mild. It is generally believed that the estimator bias will be $O(1/n)$ and hence $o(1/sqrt{n})$. However, questions were raised by researchers about how to verify this assumption. Indeed, we show that this assumption might not always hold. In this paper, we seek to simplify and weaken the assumptions in the previously mentioned paper, to make MCMC confidence intervals without CLTs more widely applicable.
Consider X_1,X_2,...,X_n that are independent and identically N(mu,sigma^2) distributed. Suppose that we have uncertain prior information that mu = 0. We answer the question: to what extent can a frequentist 1-alpha confidence interval for mu utilize this prior information?
In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractional Brownian motion is known or unknown are investigated. These intervals are obtained by observing a single discretized sample path of a fractional Brownian motion and without any assumption on the parameter $H$.
To estimate direct and indirect effects of an exposure on an outcome from observed data strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be accompanied by a sensitivity analysis of the resulting estimates. In this article we propose a sensitivity analysis method for parametric estimation of direct and indirect effects when the exposure, mediator and outcome are all binary. The sensitivity parameters consist of the correlation between the error terms of the mediator and outcome models, the correlation between the error terms of the mediator model and the model for the exposure assignment mechanism, and the correlation between the error terms of the exposure assignment and outcome models. These correlations are incorporated into the estimation of the model parameters and identification sets are then obtained for the direct and indirect effects for a range of plausible correlation values. We take the sampling variability into account through the construction of uncertainty intervals. The proposed method is able to assess sensitivity to both mediator-outcome confounding and confounding involving the exposure. To illustrate the method we apply it to a mediation study based on data from the Swedish Stroke Register (Riksstroke).
In the nonparametric Gaussian sequence space model an $ell^2$-confidence ball $C_n$ is constructed that adapts to unknown smoothness and Sobolev-norm of the infinite-dimensional parameter to be estimated. The confidence ball has exact and honest asymptotic coverage over appropriately defined `self-similar parameter spaces. It is shown by information-theoretic methods that this `self-similarity condition is weakest possible.