Markovianity lies at the heart of classical communication problems. This in turn makes the information-theoretic characterization of Markovian processes worthwhile. Data processing inequalities are ubiquitous in this sense, assigning necessary conditions for all Markovian processes. We address here the problem of the information-theoretic analysis of constraints on Markovian processes in the quantum regime. Firstly, we show the existence of a novel class of quantum data processing inequalities called here quantum Markov monogamy inequalities. This new class of necessary conditions on quantum Markovian processes is inspired by its counterpart for classical Markovian processes, and thus providing a strong link between classical and quantum constraints on Markovianity. Secondly, we show the relevance of such inequalities by considering an example of non-Markovian behaviour witnessed by a monogamy inequality, nevertheless, do not violating any of the remaining data processing inequalities. Lastly, we show how this inequalities can be used to witness non-Markovianity at the level of the process tensor formalism.