Do you want to publish a course? Click here

SomnNET: An SpO2 Based Deep Learning Network for Sleep Apnea Detection in Smartwatches

137   0   0.0 ( 0 )
 Added by Arlene John
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The abnormal pause or rate reduction in breathing is known as the sleep-apnea hypopnea syndrome and affects the quality of sleep of an individual. A novel method for the detection of sleep apnea events (pause in breathing) from peripheral oxygen saturation (SpO2) signals obtained from wearable devices is discussed in this paper. The paper details an apnea detection algorithm of a very high resolution on a per-second basis for which a 1-dimensional convolutional neural network -- which we termed SomnNET -- is developed. This network exhibits an accuracy of 97.08% and outperforms several lower resolution state-of-the-art apnea detection methods. The feasibility of model pruning and binarization to reduce the computational complexity is explored. The pruned network with 80% sparsity exhibited an accuracy of 89.75%, and the binarized network exhibited an accuracy of 68.22%. The performance of the proposed networks is compared against several state-of-the-art algorithms.



rate research

Read More

134 - Arlene John , Barry Cardiff , 2021
Internet of Things (IoT) enabled wearable sensors for health monitoring are widely used to reduce the cost of personal healthcare and improve quality of life. The sleep apnea-hypopnea syndrome, characterized by the abnormal reduction or pause in breathing, greatly affects the quality of sleep of an individual. This paper introduces a novel method for apnea detection (pause in breathing) from electrocardiogram (ECG) signals obtained from wearable devices. The novelty stems from the high resolution of apnea detection on a second-by-second basis, and this is achieved using a 1-dimensional convolutional neural network for feature extraction and detection of sleep apnea events. The proposed method exhibits an accuracy of 99.56% and a sensitivity of 96.05%. This model outperforms several lower resolution state-of-the-art apnea detection methods. The complexity of the proposed model is analyzed. We also analyze the feasibility of model pruning and binarization to reduce the resource requirements on a wearable IoT device. The pruned model with 80% sparsity exhibited an accuracy of 97.34% and a sensitivity of 86.48%. The binarized model exhibited an accuracy of 75.59% and sensitivity of 63.23%. The performance of low complexity patient-specific models derived from the generic model is also studied to analyze the feasibility of retraining existing models to fit patient-specific requirements. The patient-specific models on average exhibited an accuracy of 97.79% and sensitivity of 92.23%. The source code for this work is made publicly available.
With recent advancements in deep learning methods, automatically learning deep features from the original data is becoming an effective and widespread approach. However, the hand-crafted expert knowledge-based features are still insightful. These expert-curated features can increase the models generalization and remind the model of some data characteristics, such as the time interval between two patterns. It is particularly advantageous in tasks with the clinically-relevant data, where the data are usually limited and complex. To keep both implicit deep features and expert-curated explicit features together, an effective fusion strategy is becoming indispensable. In this work, we focus on a specific clinical application, i.e., sleep apnea detection. In this context, we propose a contrastive learning-based cross attention framework for sleep apnea detection (named ConCAD). The cross attention mechanism can fuse the deep and expert features by automatically assigning attention weights based on their importance. Contrastive learning can learn better representations by keeping the instances of each class closer and pushing away instances from different classes in the embedding space concurrently. Furthermore, a new hybrid loss is designed to simultaneously conduct contrastive learning and classification by integrating a supervised contrastive loss with a cross-entropy loss. Our proposed framework can be easily integrated into standard deep learning models to utilize expert knowledge and contrastive learning to boost performance. As demonstrated on two public ECG dataset with sleep apnea annotation, ConCAD significantly improves the detection performance and outperforms state-of-art benchmark methods.
Obstructive Sleep Apnea (OSA) is a highly prevalent but inconspicuous disease that seriously jeopardizes the health of human beings. Polysomnography (PSG), the gold standard of detecting OSA, requires multiple specialized sensors for signal collection, hence patients have to physically visit hospitals and bear the costly treatment for a single detection. Recently, many single-sensor alternatives have been proposed to improve the cost efficiency and convenience. Among these methods, solutions based on RR-interval (i.e., the interval between two consecutive pulses) signals reach a satisfactory balance among comfort, portability and detection accuracy. In this paper, we advance RR-interval based OSA detection by considering its real-world practicality from energy perspectives. As photoplethysmogram (PPG) pulse sensors are commonly equipped on smart wrist-worn wearable devices (e.g., smart watches and wristbands), the energy efficiency of the detection model is crucial to fully support an overnight observation on patients. This creates challenges as the PPG sensors are unable to keep collecting continuous signals due to the limited battery capacity on smart wrist-worn devices. Therefore, we propose a novel Frequency Extraction Network (FENet), which can extract features from different frequency bands of the input RR-interval signals and generate continuous detection results with downsampled, discontinuous RR-interval signals. With the help of the one-to-multiple structure, FENet requires only one-third of the operation time of the PPG sensor, thus sharply cutting down the energy consumption and enabling overnight diagnosis. Experimental results on real OSA datasets reveal the state-of-the-art performance of FENet.
Supervised machine learning applications in the health domain often face the problem of insufficient training datasets. The quantity of labelled data is small due to privacy concerns and the cost of data acquisition and labelling by a medical expert. Furthermore, it is quite common that collected data are unbalanced and getting enough data to personalize models for individuals is very expensive or even infeasible. This paper addresses these problems by (1) designing a recurrent Generative Adversarial Network to generate realistic synthetic data and to augment the original dataset, (2) enabling the generation of balanced datasets based on heavily unbalanced dataset, and (3) to control the data generation in such a way that the generated data resembles data from specific individuals. We apply these solutions for sleep apnea detection and study in the evaluation the performance of four well-known techniques, i.e., K-Nearest Neighbour, Random Forest, Multi-Layer Perceptron, and Support Vector Machine. All classifiers exhibit in the experiments a consistent increase in sensitivity and a kappa statistic increase by between 0.007 and 0.182.
Sleep staging is fundamental for sleep assessment and disease diagnosis. Although previous attempts to classify sleep stages have achieved high classification performance, several challenges remain open: 1) How to effectively extract salient waves in multimodal sleep data; 2) How to capture the multi-scale transition rules among sleep stages; 3) How to adaptively seize the key role of specific modality for sleep staging. To address these challenges, we propose SalientSleepNet, a multimodal salient wave detection network for sleep staging. Specifically, SalientSleepNet is a temporal fully convolutional network based on the $rm U^2$-Net architecture that is originally proposed for salient object detection in computer vision. It is mainly composed of two independent $rm U^2$-like streams to extract the salient features from multimodal data, respectively. Meanwhile, the multi-scale extraction module is designed to capture multi-scale transition rules among sleep stages. Besides, the multimodal attention module is proposed to adaptively capture valuable information from multimodal data for the specific sleep stage. Experiments on the two datasets demonstrate that SalientSleepNet outperforms the state-of-the-art baselines. It is worth noting that this model has the least amount of parameters compared with the existing deep neural network models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا