Do you want to publish a course? Click here

Podcast Metadata and Content: Episode Relevance andAttractiveness in Ad Hoc Search

319   0   0.0 ( 0 )
 Added by Ben Carterette
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Rapidly growing online podcast archives contain diverse content on a wide range of topics. These archives form an important resource for entertainment and professional use, but their value can only be realized if users can rapidly and reliably locate content of interest. Search for relevant content can be based on metadata provided by content creators, but also on transcripts of the spoken content itself. Excavating relevant content from deep within these audio streams for diverse types of information needs requires varying the approach to systems prototyping. We describe a set of diverse podcast information needs and different approaches to assessing retrieved content for relevance. We use these information needs in an investigation of the utility and effectiveness of these information sources. Based on our analysis, we recommend approaches for indexing and retrieving podcast content for ad hoc search.



rate research

Read More

151 - Xueli Yu , Weizhi Xu , Zeyu Cui 2021
The ad-hoc retrieval task is to rank related documents given a query and a document collection. A series of deep learning based approaches have been proposed to solve such problem and gained lots of attention. However, we argue that they are inherently based on local word sequences, ignoring the subtle long-distance document-level word relationships. To solve the problem, we explicitly model the document-level word relationship through the graph structure, capturing the subtle information via graph neural networks. In addition, due to the complexity and scale of the document collections, it is considerable to explore the different grain-sized hierarchical matching signals at a more general level. Therefore, we propose a Graph-based Hierarchical Relevance Matching model (GHRM) for ad-hoc retrieval, by which we can capture the subtle and general hierarchical matching signals simultaneously. We validate the effects of GHRM over two representative ad-hoc retrieval benchmarks, the comprehensive experiments and results demonstrate its superiority over state-of-the-art methods.
136 - Su Yan , Wei Lin , Tianshu Wu 2017
On most sponsored search platforms, advertisers bid on some keywords for their advertisements (ads). Given a search request, ad retrieval module rewrites the query into bidding keywords, and uses these keywords as keys to select Top N ads through inverted indexes. In this way, an ad will not be retrieved even if queries are related when the advertiser does not bid on corresponding keywords. Moreover, most ad retrieval approaches regard rewriting and ad-selecting as two separated tasks, and focus on boosting relevance between search queries and ads. Recently, in e-commerce sponsored search more and more personalized information has been introduced, such as user profiles, long-time and real-time clicks. Personalized information makes ad retrieval able to employ more elements (e.g. real-time clicks) as search signals and retrieval keys, however it makes ad retrieval more difficult to measure ads retrieved through different signals. To address these problems, we propose a novel ad retrieval framework beyond keywords and relevance in e-commerce sponsored search. Firstly, we employ historical ad click data to initialize a hierarchical network representing signals, keys and ads, in which personalized information is introduced. Then we train a model on top of the hierarchical network by learning the weights of edges. Finally we select the best edges according to the model, boosting RPM/CTR. Experimental results on our e-commerce platform demonstrate that our ad retrieval framework achieves good performance.
Traditional statistical retrieval models often treat each document as a whole. In many cases, however, a document is relevant to a query only because a small part of it contain the targeted information. In this work, we propose a neural passage model (NPM) that uses passage-level information to improve the performance of ad-hoc retrieval. Instead of using a single window to extract passages, our model automatically learns to weight passages with different granularities in the training process. We show that the passage-based document ranking paradigm from previous studies can be directly derived from our neural framework. Also, our experiments on a TREC collection showed that the NPM can significantly outperform the existing passage-based retrieval models.
Despite the services of sophisticated search engines like Google, there are a number of interesting information sources which are useful but largely inaccessible to current Web users. These information sources are often ad-hoc, location-specific and only useful for users over short periods of time, or relate to tacit knowledge of users or implicit knowledge in crowds. The solution presented in this paper addresses these problems by introducing an integrated concept of location and presence across the physical and virtual worlds enabling ad-hoc socializing of users interested in, or looking for similar information. While the definition of presence in the physical world is straightforward - through a spatial location and vicinity at a certain point in time - their definitions in the virtual world are neither obvious nor trivial. Based on a detailed analysis we provide an integrated spatial model spanning both worlds which enables us to define presence of users in a unified way. This integrated model allows us to enable ad-hoc socializing of users browsing the Web with users in the physical world specific to their joint information needs and allows us to unlock the untapped information sources mentioned above. We describe a proof-of-concept implementation of our model and provide an empirical analysis based on real-world experiments.
471 - Zhengyi Ma , Zhicheng Dou , Wei Xu 2021
Designing pre-training objectives that more closely resemble the downstream tasks for pre-trained language models can lead to better performance at the fine-tuning stage, especially in the ad-hoc retrieval area. Existing pre-training approaches tailored for IR tried to incorporate weak supervised signals, such as query-likelihood based sampling, to construct pseudo query-document pairs from the raw textual corpus. However, these signals rely heavily on the sampling method. For example, the query likelihood model may lead to much noise in the constructed pre-training data. blfootnote{$dagger$ This work was done during an internship at Huawei.} In this paper, we propose to leverage the large-scale hyperlinks and anchor texts to pre-train the language model for ad-hoc retrieval. Since the anchor texts are created by webmasters and can usually summarize the target document, it can help to build more accurate and reliable pre-training samples than a specific algorithm. Considering different views of the downstream ad-hoc retrieval, we devise four pre-training tasks based on the hyperlinks. We then pre-train the Transformer model to predict the pair-wise preference, jointly with the Masked Language Model objective. Experimental results on two large-scale ad-hoc retrieval datasets show the significant improvement of our model compared with the existing methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا