TOI-1518b: A Misaligned Ultra-hot Jupiter with Iron in its Atmosphere


Abstract in English

We present the discovery of TOI-1518b -- an ultra-hot Jupiter orbiting a bright star $V = 8.95$. The transiting planet is confirmed using high-resolution optical transmission spectra from EXPRES. It is inflated, with $R_p = 1.875pm0.053,R_{rm J}$, and exhibits several interesting properties, including a misaligned orbit (${240.34^{+0.93}_{-0.98}}$ degrees) and nearly grazing transit ($b =0.9036^{+0.0061}_{-0.0053}$). The planet orbits a fast-rotating F0 host star ($T_{mathrm{eff}} simeq 7300$ K) in 1.9 days and experiences intense irradiation. Notably, the TESS data show a clear secondary eclipse with a depth of $364pm28$ ppm and a significant phase curve signal, from which we obtain a relative day-night planetary flux difference of roughly 320 ppm and a 5.2$sigma$ detection of ellipsoidal distortion on the host star. Prompted by recent detections of atomic and ionized species in ultra-hot Jupiter atmospheres, we conduct an atmospheric cross-correlation analysis. We detect neutral iron (${5.2sigma}$), at $K_p = 157^{+68}_{-44}$ km s$^{-1}$ and $V_{rm sys} = -16^{+2}_{-4}$ km s$^{-1}$, adding another object to the small sample of highly irradiated gas-giant planets with Fe detections in transmission. Detections so far favor particularly inflated gas giants with radii $gtrsim 1.78,R_{rm J}$; although this may be due to observational bias. With an equilibrium temperature of $T_{rm eq}=2492pm38$ K and a measured dayside brightness temperature of $3237pm59$ K (assuming zero geometric albedo), TOI-1518b is a promising candidate for future emission spectroscopy to probe for a thermal inversion.

Download