Do you want to publish a course? Click here

Cepheid Metallicity in the Leavitt Law (C-MetaLL) survey: I. HARPS-N@TNG spectroscopy of 47 Classical Cepheid and 1 BL Her variables

395   0   0.0 ( 0 )
 Added by Vincenzo Ripepi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Classical Cepheids (DCEPs) are the most important primary indicators of the extragalactic distance scale. Establishing the dependence on metallicity of their period--luminosity and period--Wesenheit ($PLZ$/$PWZ$) relations has deep consequences on the calibration of secondary distance indicators that lead to the final estimate of the Hubble constant (H$_0$). We collected high-resolution spectroscopy for 47 DCEPs plus 1 BL Her variables with HARPS-N@TNG and derived accurate atmospheric parameters, radial velocities and metal abundances. We measured spectral lines for 29 species and characterized their chemical abundances, finding very good agreement with previous results. We re-determined the ephemerides for the program stars and measured their intensity-averaged magnitudes in the $V,I,J,H,K_s$ bands. We complemented our sample with literature data and used the Gaia Early Data Release 3 (EDR3) to investigate the $PLZ$/$PWZ$ relations for Galactic DCEPs in a variety of filter combinations. We find that the solution without any metallicity term is ruled out at more than the 5 $sigma$ level. Our best estimate for the metallicity dependence of the intercept of the $PLK_s$, $PWJK_s$, $PWVK_s$ and $PWHVI$ relations with three parameters, is $-0.456pm$0.099, $-0.465pm$0.071, $-0.459pm$0.107 and $-0.366pm$0.089 mag/dex, respectively. These values are significantly larger than the recent literature. The present data are still inconclusive to establish whether or not also the slope of the relevant relationships depends on metallicity. Applying a correction to the standard zero point offset of the Gaia parallaxes has the same effect of reducing by $sim$22% the size of the metallicity dependence on the intercept of the PLZ/PWZ relations.



rate research

Read More

We present results from a detailed analysis of theoretical and observed light curves of classical Cepheid variables in the Galaxy and the Magellanic Clouds. Theoretical light curves of Cepheid variables are based on non-linear convective hydrodynamical pulsation models and the observational data are taken from the ongoing wide-field variability surveys. The variation in theoretical and observed light curve parameters as a function of period, wavelength and metallicity is used to constrain the input physics to the pulsation models, such as the mass-luminosity relations obeyed by Cepheid variables. We also account for the variation in the convective efficiency as input to the stellar pulsation models and its impact on the theoretical amplitudes and Period-Luminosity relations for Cepheid variables.
79 - David G. Turner 2016
Field reddenings are summarized for 68 Cepheids from published studies and updated results presented here. The compilation forms the basis for a comparison with other published reddening scales of Cepheids, including those established from reddening-independent indices, photometry on the Lick six-color system, Str{o}mgren system, Walraven system, Washington system, Cape $BVI$ system, DDO system, and Geneva system, IRSB studies, and Cepheid spectroscopy, both old and new. Reddenings tied to period-color relations are the least reliable, as expected, while photometric color excesses vary in precision, their accuracy depending on the methodology and calibration sample. The tests provide insights into the accuracy and precision of published Cepheid reddening scales, and lead to a new system of standardized reddenings comprising a sample of 198 variables with an average uncertainty of $pm0.028$ in E$_{B-V}$, the precision being less than $pm0.01$ for many. The collected color excesses are used to map the dispersion in intrinsic colors as a function of pulsation period, the results contradicting current perceptions about the period dependence of dispersion in Cepheid effective temperatures.
New CCD photometry has been combined with published and unpublished earlier observations to study the three Cepheid variables in M13: V1, V2 and V6. The light curve characteristics in $B$, $V$ and $I_{rm C}$ have been determined and the periods updated. A period change analysis shows all three stars have increasing periods but for V1 and V2 the rate of period increase does not appear to be constant over the 118 years of observation. The observed rates of period increase are in good agreement with the predictions of the Pisa theoretical models with helium abundance $Y = 0.25$. Theory suggests V1 and V6 have masses of $sim0.57,M_odot$ and are in the redward-evolving final stage of the ``blue loop evolutionary phase that is produced when helium-shell ignition occurs. The larger period and period change rate for V2 indicate it has a mass of $sim0.52,M_odot$. A study of eighteen metal-poor BL Her stars shows the observed period changes for such objects in general can be reasonably well explained using the predictions from horizontal branch evolutionary tracks. BL Her stars with periods less than $sim$3 d and relatively large secular period change rates ($dP/dtapprox5-15$ d/Myr) are in the evolutionary stage before He-shell ignition; the remaining cases are stars that have already experienced He-shell ignition. Moreover, an analysis of crossing time through the instability strip indicates that it is likely that few, if any, BL Her stars have a He abundance as large as $Y = 0.33$.
We present results from the Large Magellanic Cloud Near-infrared Synoptic Survey (LMCNISS) for classical and type II Cepheid variables that were identified by the Optical Gravitational Lensing Experiment (OGLE-III) catalogue. Multiwavelength time-series data for classical Cepheid variables are used to study light-curve structures as a function of period and wavelength. We exploit a sample of $sim$1400 classical and $sim$80 type II Cepheid variables to derive Period--Wesenheit relations that combine both optical and near-infrared data. The new Period--Luminosity and Wesenheit relations are used to estimate distances to several Local Group galaxies (using classical Cepheids) and to Galactic globular clusters (using type II Cepheids). By appealing to a statistical framework, we find that fundamental-mode classical Cepheid Period--Luminosity relations are non-linear around 10--18 days at optical and near-IR wavelengths. We also suggest that a non-linear relation provides a better constraint on the Cepheid Period--Luminosity relation in type Ia Supernovae host galaxies, though it has a negligible effect on the systematic uncertainties affecting the local measurement of the Hubble constant.
We derive a distance of $15.8pm0.4$ Mpc to the archetypical Seyfert 1 galaxy NGC 4151 based on the near-infrared Cepheid Period-Luminosity relation and new Hubble Space Telescope multiband imaging. This distance determination, based on measurements of 35 long-period ($P > 25$d) Cepheids, will support the absolute calibration of the supermassive black hole mass in this system, as well as studies of the dynamics of the feedback or feeding of its active galactic nucleus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا