No Arabic abstract
Current and future high-contrast imaging instruments require extreme adaptive optics (XAO) systems to reach contrasts necessary to directly image exoplanets. Telescope vibrations and the temporal error induced by the latency of the control loop limit the performance of these systems. One way to reduce these effects is to use predictive control. We describe how model-free Reinforcement Learning can be used to optimize a Recurrent Neural Network controller for closed-loop predictive control. First, we verify our proposed approach for tip-tilt control in simulations and a lab setup. The results show that this algorithm can effectively learn to mitigate vibrations and reduce the residuals for power-law input turbulence as compared to an optimal gain integrator. We also show that the controller can learn to minimize random vibrations without requiring online updating of the control law. Next, we show in simulations that our algorithm can also be applied to the control of a high-order deformable mirror. We demonstrate that our controller can provide two orders of magnitude improvement in contrast at small separations under stationary turbulence. Furthermore, we show more than an order of magnitude improvement in contrast for different wind velocities and directions without requiring online updating of the control law.
The search for exoplanets is pushing adaptive optics systems on ground-based telescopes to their limits. One of the major limitations at small angular separations, exactly where exoplanets are predicted to be, is the servo-lag of the adaptive optics systems. The servo-lag error can be reduced with predictive control where the control is based on the future state of the atmospheric disturbance. We propose to use a linear data-driven integral predictive controller based on subspace methods that is updated in real time. The new controller only uses the measured wavefront errors and the changes in the deformable mirror commands, which allows for closed-loop operation without requiring pseudo-open loop reconstruction. This enables operation with non-linear wavefront sensors such as the pyramid wavefront sensor. We show that the proposed controller performs near-optimal control in simulations for both stationary and non-stationary disturbances and that we are able to gain several orders of magnitude in raw contrast. The algorithm has been demonstrated in the lab with MagAO-X, where we gain more than two orders of magnitude in contrast.
The effects of photon noise, aliasing, wavefront chromaticity and scintillation on the point spread function (PSF) contrast achievable with ground based adaptive optics (AO) are evaluated for different wavefront sensing schemes. I show that a wavefront sensor (WFS) based upon the Zernike phase contrast technique offers the best sensitivity to photon noise at all spatial frequencies, while the Shack-Hartmann WFS is significantly less sensitive. In AO systems performing wavefront sensing in the visible and scientific imaging in the near-IR, the PSF contrast limit is set by the scintillation chromaticity induced by Fresnel propagation through the atmosphere. On a 8m telescope, the PSF contrast is then limited to 1e-4 to 1e-5 in the central arcsecond. Wavefront sensing and scientific imaging should therefore be done at the same wavelength, in which case, on bright sources, PSF contrasts between 1e-6 and 1e-7 can be achieved within 1 arcsecond on a 8m telescope in optical/near-IR. The impact of atmospheric turbulence parameters (seeing, wind speed, turbulence profile) on the PSF contrast is quantified. I show that a focal plane wavefront sensing scheme offers unique advantages, and I discuss how to implement it. Coronagraphic options are also briefly discussed.
One of the primary science goals of the Large UV/Optical/Infrared Surveyor (LUVOIR) mission concept is to detect and characterize Earth-like exoplanets orbiting nearby stars with direct imaging. The success of its coronagraph instrument ECLIPS (Extreme Coronagraph for Living Planetary Systems) depends on the ability to stabilize the wavefront from a large segmented mirror such that optical path differences are limited to tens of picometers RMS during an exposure time of a few hours. In order to relax the constraints on the mechanical stability, ECLIPS will be equipped with a wavefront sensing and control (WS&C) architecture to correct wavefront errors up to temporal frequencies >~1 Hz. These errors may be dominated by spacecraft structural dynamics exciting vibrations at the segmented primary mirror. In this work, we present detailed simulations of the WS&C system within the ECLIPS instrument and the resulting contrast performance. This study assumes wavefront aberrations based on a finite element model of a simulated telescope with spacecraft structural dynamics. Wavefront residuals are then computed according to a model of the adaptive optics system that includes numerical propagation to simulate a realistic wavefront sensor and an analytical model of the temporal performance. An end-to-end numerical propagation model of ECLIPS is then used to estimate the residual starlight intensity distribution at the science detector. We show that the contrast performance depends strongly on the target star magnitude and the spatio-temporal distribution of wavefront errors from the telescope. In cases with significant vibration, we advocate for the use of laser metrology to mitigate high temporal frequency wavefront errors and increase the mission yield.
We present current status of H$alpha$ high-contrast imaging observations with Subaru/SCExAO+VAMPIRES. Our adaptive optics correction at optical wavelengths in combination with (double) spectral differential imaging (SDI) and angular differential imaging (ADI) was capable of detecting a ring-like feature around omi Cet and the H$alpha$ counterpart of jet around RY Tau. We tested the post-processing by changing the order of ADI and SDI and both of the contrast limits achieved $sim10^{-3}-5times10^{-4}$ at $0.3^{primeprime}$, which is comparable to other H$alpha$ high-contrast imaging instruments in the southern hemisphere such as VLT/SPHERE, VLT/MUSE, and MagAO. Subaru/VAMPIRES provides great opportunities for H$alpha$ high-contrast imaging for northern hemisphere targets.
One of the primary goals of exoplanet science is to find and characterize habitable planets, and direct imaging will play a key role in this effort. Though imaging a true Earth analog is likely out of reach from the ground, the coming generation of giant telescopes will find and characterize many planets in and near the habitable zones (HZs) of nearby stars. Radial velocity and transit searches indicate that such planets are common, but imaging them will require achieving extreme contrasts at very small angular separations, posing many challenges for adaptive optics (AO) system design. Giant planets in the HZ may even be within reach with the latest generation of high-contrast imagers for a handful of very nearby stars. Here we will review the definition of the HZ, and the characteristics of detectable planets there. We then review some of the ways that direct imaging in the HZ will be different from the typical exoplanet imaging survey today. Finally, we present preliminary results from our observations of the HZ of {alpha} Centauri A with the Magellan AO systems VisAO and Clio2 cameras.