Do you want to publish a course? Click here

Molecular Line Observations in Two Dusty Star-Forming Galaxies at z = 6.9

101   0   0.0 ( 0 )
 Added by Sreevani Jarugula
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

SPT0311-58 is the most massive infrared luminous system discovered so far during the Epoch of Reionization (EoR). In this paper, we present a detailed analysis of the molecular interstellar medium at z = 6.9, through high-resolution observations of the CO(6-5), CO(7-6), CO(10-9), [CI](2-1), and p-H2O(211-202) lines and dust continuum emission with the Atacama Large Millimeter/submillimeter Array (ALMA). The system consists of a pair of intensely star-forming gravitationally lensed galaxies (labelled West and East). The intrinsic far-infrared luminosity is (16 $pm$ 4)$timesrm 10^{12} rm L_{odot}$ in West and (27 $pm$ 4)$timesrm 10^{11} rm L_{odot}$ in East. We model the dust, CO, and [CI] using non-local thermodynamic equilibrium radiative transfer models and estimate the intrinsic gas mass to be (5.4 $pm$ 3.4)$timesrm 10^{11} rm M_{odot}$ in West and (3.1 $pm$ 2.7)$timesrm 10^{10} rm M_{odot}$ in East. We find that the CO spectral line energy distribution in West and East are typical of high-redshift sub-millimeter galaxies (SMGs). The CO-to-H2 conversion factor ($alpha_{CO}$) and the gas depletion time scales estimated from the model are consistent with the high-redshift SMGs in the literature within the uncertainties. We find no evidence of evolution of depletion time with redshift in SMGs at z > 3. This is the most detailed study of molecular gas content of a galaxy in the EoR to-date, with the most distant detection of H2O in a galaxy without any evidence for active galactic nuclei in the literature.

rate research

Read More

105 - C. Mancuso 2016
We exploit the continuity equation approach and the `main sequence star-formation timescales to show that the observed high abundance of galaxies with stellar masses > a few 10^10 M_sun at redshift z>4 implies the existence of a galaxy population featuring large star formation rates (SFRs) > 10^2 M_sun/yr in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z<3 in the far-IR band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z~10, elucidating that the number density at z<8 for SFRs >30 M_sun/yr cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z~8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.
We present spatially-resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z=2.78 and z=5.66, with effective source-plane resolution of less than 1kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870um dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z=2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO-H_2 conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation - gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.
95 - C.M. Casey 2017
We present near-infrared and optical spectroscopic observations of a sample of 450$mu$m and 850$mu$m-selected dusty star-forming galaxies (DSFGs) identified in a 400 arcmin$^2$ area in the COSMOS field. Thirty-one sources of the 102 targets were spectroscopically confirmed at $0.2<z<4$, identified primarily in the near-infrared with Keck MOSFIRE and some in the optical with Keck LRIS and DEIMOS. The low rate of confirmation is attributable both to high rest-frame optical obscuration in our targets and limited sensitivity to certain redshift ranges. The high-quality photometric redshifts available in the COSMOS field allow us to test the robustness of photometric redshifts for DSFGs. We find a subset (11/31$approx35$%) of DSFGs with inaccurate ($Delta z/(1+z)>0.2$) or non-existent photometric redshifts; these have very distinct spectral energy distributions from the remaining DSFGs, suggesting a decoupling of highly obscured and unobscured components. We present a composite rest-frame 4300--7300AA spectrum for DSFGs, and find evidence of 200$pm$30 km s$^{-1}$ gas outflows. Nebular line emission for a sub-sample of our detections indicate that hard ionizing radiation fields are ubiquitous in high-z DSFGs, even more so than typical mass or UV-selected high-z galaxies. We also confirm the extreme level of dust obscuration in DSFGs, measuring very high Balmer decrements, and very high ratios of IR to UV and IR to H$alpha$ luminosities. This work demonstrates the need to broaden the use of wide bandwidth technology in the millimeter to the spectroscopic confirmations of large samples of high-z DSFGs, as the difficulty in confirming such sources at optical/near-infrared wavelengths is exceedingly challenging given their obscuration.
We constrain the rate of gas inflow into and outflow from a main-sequence star-forming galaxy at z~1.4 by fitting a simple analytic model for the chemical evolution in a galaxy to the observational data of the stellar mass, metallicity, and molecular gas mass fraction. The molecular gas mass is derived from CO observations with a metallicity-dependent CO-to-H2 conversion factor, and the gas metallicity is derived from the H{alpha} and [NII]{lambda} 6584 emission line ratio. Using a stacking analysis of CO integrated intensity maps and the emission lines of H{alpha} and [NII], the relation between stellar mass, metallicity, and gas mass fraction is derived. We constrain the inflow and outflow rates with least-chi-square fitting of a simple analytic chemical evolution model to the observational data. The best-fit inflow and outflow rates are ~1.7 and ~0.4 in units of star-formation rate, respectively. The inflow rate is roughly comparable to the sum of the star-formation rate and outflow rate, which supports the equilibrium model for galaxy evolution; i.e., all inflow gas is consumed by star formation and outflow.
We present an extragalactic survey using observations from the Atacama Large Millimeter/submillimeter Array (ALMA) to characterise galaxy populations up to $z=0.35$: the Valparaiso ALMA Line Emission Survey (VALES). We use ALMA Band-3 CO(1--0) observations to study the molecular gas content in a sample of 67 dusty normal star-forming galaxies selected from the $Herschel$ Astrophysical Terahertz Large Area Survey ($H$-ATLAS). We have spectrally detected 49 galaxies at $>5sigma$ significance and 12 others are seen at low significance in stacked spectra. CO luminosities are in the range of $(0.03-1.31)times10^{10}$ K km s$^{-1}$ pc$^2$, equivalent to $log({rm M_{gas}/M_{odot}}) =8.9-10.9$ assuming an $alpha_{rm CO}$=4.6(K km s$^{-1}$ pc$^{2}$)$^{-1}$, which perfectly complements the parameter space previously explored with local and high-z normal galaxies. We compute the optical to CO size ratio for 21 galaxies resolved by ALMA at $sim 3$.$5$ resolution (6.5 kpc), finding that the molecular gas is on average $sim$ 0.6 times more compact than the stellar component. We obtain a global Schmidt-Kennicutt relation, given by $log [Sigma_{rm SFR}/({rm M_{odot} yr^{-1}kpc^{-2}})]=(1.26 pm 0.02) times log [Sigma_{rm M_{H2}}/({rm M_{odot},pc^{-2}})]-(3.6 pm 0.2)$. We find a significant fraction of galaxies lying at `intermediate efficiencies between a long-standing mode of star-formation activity and a starburst, specially at $rm L_{IR}=10^{11-12} L_{odot}$. Combining our observations with data taken from the literature, we propose that star formation efficiencies can be parameterised by $log [{rm SFR/M_{H2}}]=0.19 times {rm (log {L_{IR}}-11.45)}-8.26-0.41 times arctan[-4.84 (log {rm L_{IR}}-11.45) ]$. Within the redshift range we explore ($z<0.35$), we identify a rapid increase of the gas content as a function of redshift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا