Hamilton-Jacobi equations with their Hamiltonians depending Lipschitz continuously on the unknown


Abstract in English

We study the Hamilton-Jacobi equations $H(x,Du,u)=0$ in $M$ and $partial u/partial t +H(x,D_xu,u)=0$ in $Mtimes(0,infty)$, where the Hamiltonian $H=H(x,p,u)$ depends Lipschitz continuously on the variable $u$. In the framework of the semicontinuous viscosity solutions due to Barron-Jensen, we establish the comparison principle, existence theorem, and representation formula as value functions for extended real-valued, lower semicontinuous solutions for the Cauchy problem. We also establish some results on the long-time behavior of solutions for the Cauchy problem and classification of solutions for the stationary problem.

Download