No Arabic abstract
Context: The $chi^{1}$ Fornacis cluster (Alessi 13) is one of a few open clusters of its age and distance in the Solar neighbourhood that ought to benefit from more attention as it can serve as a cornerstone for numerous future studies related to star and planet formation. Aims: We take advantage of the early installment of the third data release of the Gaia space mission in combination with archival data and our own observations, to expand the census of cluster members and revisit some properties of the cluster. Methods: We applied a probabilistic method to infer membership probabilities over a field of more than 1000 deg${^2}$ to select the most likely cluster members and derive the distances, spatial velocities, and physical properties of the stars in this sample. Results: We identify 164 high-probability cluster members (including 61 new members) covering the magnitude range from 5.1 to 19.6 mag in the G-band. Our sample of cluster members is complete down to 0.04 M$_{odot}$. We derive the distance of $108.4pm0.3$ pc from Bayesian inference and confirm that the cluster is comoving with the Tucana-Horologium, Columba, and Carina young stellar associations. We investigate the kinematics of the cluster from a subsample of stars with measured radial velocities and we do not detect any significant expansion or rotation effects in the cluster. Our results suggest that the cluster is somewhat younger (about 30 Myr) than previously thought. Based on spectroscopic observations, we argue that the cluster is mass-segregated and that the distribution of spectral types shows little variation compared to other young stellar groups. Conclusions: In this study, we deliver the most complete census of cluster members that can be done with Gaia data alone and we use this new sample to provide an updated picture on the 6D structure of the cluster.
Context: Lupus is recognised as one of the closest star-forming regions, but the lack of trigonometric parallaxes in the pre-Gaia era hampered many studies on the kinematic properties of this region and led to incomplete censuses of its stellar population. Aims: We use the second data release of the Gaia space mission combined with published ancillary radial velocity data to revise the census of stars and investigate the 6D structure of the Lupus complex. Methods: We performed a new membership analysis of the Lupus association based on astrometric and photometric data over a field of 160 deg2 around the main molecular clouds of the complex and compared the properties of the various subgroups in this region. Results: We identified 137 high-probability members of the Lupus association of young stars, including 47 stars that had never been reported as members before. Many of the historically known stars associated with the Lupus region identified in previous studies are more likely to be field stars or members of the adjacent Scorpius-Centaurus association. Our new sample of members covers the magnitude and mass range from G=8 to G=18 mag and from 0.03 to 2.4Msun, respectively. We compared the kinematic properties of the stars projected towards the molecular clouds Lupus 1 to 6 and showed that these subgroups are located at roughly the same distance (about 160~pc) and move with the same spatial velocity. Our age estimates inferred from stellar models show that the Lupus subgroups are coeval (with median ages ranging from about 1 to 3 Myr). The Lupus association appears to be younger than the population of young stars in the Corona-Australis star-forming region recently investigated by our team using a similar methodology. The initial mass function of the Lupus association inferred from the distribution of spectral types shows little variation compared to other star-forming regions.
In the Gaia era, the membership analysis and parameter determination of open clusters (OCs) are more accurate. We performed a census of OCs classical Cepheids based on Gaia Early Data Release 3 (EDR3) and obtained a sample of 33 OC Cepheids fulfilling the constraints of the spatial position, proper motion, parallax and evolution state. 13 of 33 OC Cepheids are newly discovered. Among them, CM Sct is the first first-crossing Cepheids with direct evidence of evolution. DP Vel is likely a fourth- or fifth-crossing Cepheids. Based on independent distances from OCs, W_1-band period-luminosity relation of Cepheids is determined with a 3.5% accuracy: <MW1> = -(3.274 +- 0.090) log P - (-2.567 +- 0.080). The Gaia-band period-Wesenheit relation agrees well with Ripepi et al. (2019). A direct period-age relation for fundamental Cepheids are also determined based on OCs age, that is log t = -(0.638 +- 0.063) log P + (8.569 +- 0.057).
Corona-Australis is one of the nearest regions to the Sun with recent and ongoing star formation, but the current picture of its stellar (and substellar) content is not complete yet. We take advantage of the second data release of the Gaia space mission to revisit the stellar census and search for additional members of the young stellar association in Corona-Australis. We applied a probabilistic method to infer membership probabilities based on a multidimensional astrometric and photometric data set over a field of 128 deg$^{2}$ around the dark clouds of the region. We identify 313 high-probability candidate members to the Corona-Australis association, 262 of which had never been reported as members before. Our sample of members covers the magnitude range between $Ggtrsim5$ mag and $Glesssim20$ mag, and it reveals the existence of two kinematically and spatially distinct subgroups. There is a distributed `off-cloud population of stars located in the north of the dark clouds that is twice as numerous as the historically known `on-cloud population that is concentrated around the densest cores. By comparing the location of the stars in the HR-diagram with evolutionary models, we show that these two populations are younger than 10 Myr. Based on their infrared excess emission, we identify 28 Class II and 215 Class III stars among the sources with available infrared photometry, and we conclude that the frequency of Class II stars (i.e. `disc-bearing stars) in the on-cloud region is twice as large as compared to the off-cloud population. The distance derived for the Corona-Australis region based on this updated census is $d=149.4^{+0.4}_{-0.4}$ pc, which exceeds previous estimates by about 20 pc.In this paper we provide the most complete census of stars in Corona-Australis available to date that can be confirmed with Gaia data.
Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is revisited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase space information of 861 clusters. The velocity distribution of nearby clusters was investigated, as well as the spatial and velocity distributions of the whole sample as a function of age. A high quality subsample was used to investigate some possible pairs and groups of clusters sharing the same Galactic position and velocity. Results. For the high quality sample that has 406 clusters, the median uncertainty of the weighted mean radial velocity is 0.5 km/s. The accuracy, assessed by comparison to ground-based high resolution spectroscopy, is better than 1 km/s. Open clusters nicely follow the velocity distribution of field stars in the close Solar neighbourhood previously revealed by Gaia DR2. As expected, the vertical distribution of young clusters is very flat but the novelty is the high precision to which this can be seen. The dispersion of vertical velocities of young clusters is at the level of 5 km/s. Clusters older than 1 Gyr span distances to the Galactic plane up to 1 kpc with a vertical velocity dispersion of 14 km/s, typical of the thin disc. Five pairs of clusters and one group with five members are possibly physically related. Other binary candidates previously identified turn out to be chance alignment.
Massive stars and their stellar winds are important for a number of feedback processes. The mass lost in the stellar wind can help determine the end-point of the star as a NS or a BH. However, the impact of mass-loss on the post-Main Sequence evolutionary stage of massive stars is not well understood. Westerlund 1 is an ideal astrophysical laboratory in which to study massive stars and their winds in great detail over a large range of different evolutionary phases. Aims: We aim to study the radio emission from Westerlund 1, in order to measure radio fluxes from the population of massive stars, and determine mass-loss rates and spectral indices where possible. Methods: Observations were carried out in 2015 and 2016 with the Australia telescope compact array (ATCA) at 5.5 and 9 GHz using multiple configurations, with maximum baselines ranging from 750m to 6km. Results: 30 stars were detected in the radio from the fully concatenated dataset, 10 of which were WRs (predominantly late type WN stars), 5 YHGs, 4 RSGs, 1 LBV star, the sgB[e] star W9, and several O and B supergiants. New source detections in the radio were found for 5 WR stars, and 5 OB supergiants. These detections have led to evidence for 3 new OB supergiant binary candidates, inferred from derived spectral index limits. Conclusions: Spectral indices and index limits were determined for massive stars in Westerlund 1. For cluster members found to have partially optically thick emission, mass-loss rates were calculated. Under the approximation of a thermally emitting stellar wind and a steady mass-loss rate, clumping ratios were then estimated for 8 WRs. Diffuse radio emission was detected throughout the cluster. Detections of knots of radio emission with no known stellar counterparts indicate the highly clumped structure of this intra-cluster medium, likely shaped by a dense cluster wind.