Ramsey numbers of quadrilateral versus books


Abstract in English

A book $B_n$ is a graph which consists of $n$ triangles sharing a common edge. In this paper, we study Ramsey numbers of quadrilateral versus books. Previous results give the exact value of $r(C_4,B_n)$ for $1le nle 14$. We aim to show the exact value of $r(C_4,B_n)$ for infinitely many $n$. To achieve this, we first prove that $r(C_4,B_{(m-1)^2+(t-2)})le m^2+t$ for $mge4$ and $0 leq t leq m-1$. This improves upon a result by Faudree, Rousseau and Sheehan (1978) which states that begin{align*} r(C_4,B_n)le g(g(n)), ;;text{where};;g(n)=n+lfloorsqrt{n-1}rfloor+2. end{align*} Combining the new upper bound and constructions of $C_4$-free graphs, we are able to determine the exact value of $r(C_4,B_n)$ for infinitely many $n$. As a special case, we show $r(C_4,B_{q^2-q-2}) = q^2+q-1$ for all prime power $qge4$.

Download