Titanium doped sapphire (Ti:sapphire) is a laser gain material with broad gain bandwidth benefiting from the material stability of sapphire. These favorable characteristics of Ti:sapphire have given rise to femtosecond lasers and optical frequency combs. Shaping a single Ti:sapphire crystal into a millimeter sized high quality whispering gallery mode resonator ($Qsim10^8$) reduces the lasing threshold to 14.2 mW and increases the laser slope efficiency to 34%. The observed lasing can be both multi-mode and single-mode. This is the first demonstration of a Ti:sapphire whispering-gallery laser. Furthermore, a novel method of evaluating the gain in Ti:sapphire in the near infrared region is demonstrated by introducing a probe laser with a central wavelength of 795 nm. This method results in decreasing linewidth of the modes excited with the probe laser, consequently increasing their $Q$. These findings open avenues for the usage of whispering gallery mode resonators as cavities for the implementation of compact Ti:sapphire lasers. Moreover, Ti:sapphire can also be utilized as an amplifier inside its gain bandwidth by implementing a pump-probe configuration.