No Arabic abstract
In previous work [1], three TAIJI orbital deployments have been proposed to compose alternative LISA-TAIJI networks, TAIJIm (leading the Earth by $20^circ$ and $-60^circ$ inclined with respect to ecliptic plane), TAIJIp (leading the Earth by $20^circ$ and $+60^circ$ inclined), TAIJIc (colocated and coplanar with LISA) with respect to LISA mission (trailing the Earth by $20^circ$ and $+60^circ$ inclined). And the LISA-TAIJIm network has been identified as the most capable configuration for massive black hole binary observation. In this work, we examine the performance of three networks to the stochastic gravitational wave background (SGWB) especially for the comparison of two eligible configurations, LISA-TAIJIm and LISA-TAIJIp. This investigation shows that the detectability of LISA-TAIJIm is competitive with the LISA-TAIJIp network for some specific SGWB spectral shapes. And the capability of LISA-TAIJIm is also identical to LISA-TAIJIp to separate the SGWB components by determining the parameters of signals. Considering the performances on SGWB and massive black hole binaries observations, the TAIJIm could be recognized as an optimal option to fulfill joint observations with LISA.
The space-borne gravitational wave (GW) detectors, LISA and TAIJI, are planned to be launched in the 2030s. The dual detectors with comparable sensitivities will form a network observing GW with significant advantages. In this work, we investigate the three possible LISA-TAIJI networks for the different location and orientation compositions of LISA orbit ($+60^circ$ inclination and trailing the Earth by $20^circ$) and alternative TAIJI orbit configurations including TAIJIp ($+60^circ$ inclination and leading the Earth by $20^circ$), TAIJIc ($+60^circ$ inclination and co-located with LISA), TAIJIm ($-60^circ$ inclination and leading the Earth by $20^circ$). In the three LISA-TAIJI configurations, the LISA-TAIJIm network shows the best performance on the sky localization and polarization determination for the massive binary system due to their better complementary antenna pattern, and LISA-TAIJIc could achieve the best cross-correlation and observe the stochastic GW background with an optimal sensitivity.
Two polarization modes of gravitational wave are derived from the general relativity which are plus and cross modes. However, the alternative theories of gravity can yield the gravitational wave with up to six polarizations. Searching for the polarizations beyond plus and cross is an important test of general relativity. In principle, one space-borne detector, like LISA, could measure the gravitational wave polarizations from a long time observation with its orbital motion. With the comparable sensitivities, the joint LISA and TAIJI missions will improve the observations on the polarization predictions of theories beyond general relativity. In this work, a class of parameterized post-Einsteinian waveform is employed to describe the alternative polarizations, and six parameterized post-Einsteinian parameters quantifying from general relativity waveform are examined by using the LISA-TAIJI network. Our results show that the measurements on amplitudes of alternative polarizations from joint LISA-TAIJI observation could be improved by more than 10 times compared to LISA single mission in an optimal scenario.
We calculate the sensitivity to a circular polarization of an isotropic stochastic gravitational wave background (ISGWB) as a function of frequency for ground- and space-based interferometers and observations of the cosmic microwave background. The origin of a circularly polarized ISGWB may be due to exotic primordial physics (i.e., parity violation in the early universe) and may be strongly frequency dependent. We present calculations within a coherent framework which clarifies the basic requirements for sensitivity to circular polarization, in distinction from previous work which focused on each of these techniques separately. We find that the addition of an interferometer with the sensitivity of the Einstein Telescope in the southern hemisphere improves the sensitivity of the ground-based network to circular polarization by about a factor of two. The sensitivity curves presented in this paper make clear that the wide range in frequencies of current and planned observations ($10^{-18} {rm Hz} lesssim f lesssim 100 {rm Hz}$) will be critical to determining the physics that underlies any positive detection of circular polarization in the ISGWB. We also identify a desert in circular polarization sensitivity for frequencies between $10^{-15} {rm Hz} lesssim f lesssim 10^{-3} {rm Hz}$, given the inability for pulsar timing arrays and indirect-detection methods to distinguish the gravitational wave polarization.
In its observation band, the Laser Interferometer Space Antenna (LISA) will simultaneously observe stochastic gravitational-wave background (SGWB) signals of different origins; orbitally modulated waveforms from galactic white dwarf binaries, a binary black hole produced background, and possibly a cosmologically produced SGWB. We simulate the emission of gravitational waves from galactic white dwarf binaries based on the Lamberts cite{Lamberts} distributions and determine a complex waveform from the galactic foreground. We generate the modulated galactic signal detected by LISA due to its orbital motion, and present a data analysis strategy to address it. The Fisher Information and Markov Chain Monte Carlo methods give an estimate of the LISA noise and parameters for the different signal sources. We simultaneously estimate the galactic foreground, the astrophysical and cosmological backgrounds, and estimate detection limits for the future LISA observation of the SGWB in the spectral domain with the 3 LISA channels $ A $, $ E $ and $ T $. In the context of the expected astrophysical background and a galactic foreground, a cosmological background energy density of about $ Omega_{GW,Cosmo} approx 8 times 10^{-13} $ could be detected by LISA with our spectral separation strategy.
LISA and Taiji are expected to form a space-based gravitational-wave (GW) detection network in the future. In this work, we make a forecast for the cosmological parameter estimation with the standard siren observation from the LISA-Taiji network. We simulate the standard siren data based on a scenario with configuration angle of $40^{circ}$ between LISA and Taiji. Three models for the population of massive black hole binary (MBHB), i.e., pop III, Q3d, and Q3nod, are considered to predict the events of MBHB mergers. We find that, based on the LISA-Taiji network, the number of electromagnetic (EM) counterparts detected is almost doubled compared with the case of single Taiji mission. Therefore, the LISA-Taiji networks standard siren observation could provide much tighter constraints on cosmological parameters. For example, solely using the standard sirens from the LISA-Taiji network, the constraint precision of $H_0$ could reach $1.3%$. Moreover, combined with the CMB data, the GW-EM observation based on the LISA-Taiji network could also tightly constrain the equation of state of dark energy, e.g., the constraint precision of $w$ reaches about $4%$, which is comparable with the result of CMB+BAO+SN. It is concluded that the GW standard sirens from the LISA-Taiji network will become a useful cosmological probe in understanding the nature of dark energy in the future.