No Arabic abstract
Kernel methods are powerful for machine learning, as they can represent data in feature spaces that similarities between samples may be faithfully captured. Recently, it is realized that machine learning enhanced by quantum computing is closely related to kernel methods, where the exponentially large Hilbert space turns to be a feature space more expressive than classical ones. In this paper, we generalize quantum kernel methods by encoding data into continuous-variable quantum states, which can benefit from the infinite-dimensional Hilbert space of continuous variables. Specially, we propose squeezed-state encoding, in which data is encoded as either in the amplitude or the phase. The kernels can be calculated on a quantum computer and then are combined with classical machine learning, e.g. support vector machine, for training and predicting tasks. Their comparisons with other classical kernels are also addressed. Lastly, we discuss physical implementations of squeezed-state encoding for machine learning in quantum platforms such as trapped ions.
Quantum computers have the opportunity to be transformative for a variety of computational tasks. Recently, there have been proposals to use the unsimulatably of large quantum devices to perform regression, classification, and other machine learning tasks with quantum advantage by using kernel methods. While unsimulatably is a necessary condition for quantum advantage in machine learning, it is not sufficient, as not all kernels are equally effective. Here, we study the use of quantum computers to perform the machine learning tasks of one- and multi-dimensional regression, as well as reinforcement learning, using Gaussian Processes. By using approximations of performant classical kernels enhanced with extra quantum resources, we demonstrate that quantum devices, both in simulation and on hardware, can perform machine learning tasks at least as well as, and many times better than, the classical inspiration. Our informed kernel design demonstrates a path towards effectively utilizing quantum devices for machine learning tasks.
Machine learning is seen as a promising application of quantum computation. For near-term noisy intermediate-scale quantum (NISQ) devices, parametrized quantum circuits (PQCs) have been proposed as machine learning models due to their robustness and ease of implementation. However, the cost function is normally calculated classically from repeated measurement outcomes, such that it is no longer encoded in a quantum state. This prevents the value from being directly manipulated by a quantum computer. To solve this problem, we give a routine to embed the cost function for machine learning into a quantum circuit, which accepts a training dataset encoded in superposition or an easily preparable mixed state. We also demonstrate the ability to evaluate the gradient of the encoded cost function in a quantum state.
Two-qubit systems typically employ 36 projective measurements for high-fidelity tomographic estimation. The overcomplete nature of the 36 measurements suggests possible robustness of the estimation procedure to missing measurements. In this paper, we explore the resilience of machine-learning-based quantum state estimation techniques to missing measurements by creating a pipeline of stacked machine learning models for imputation, denoising, and state estimation. When applied to simulated noiseless and noisy projective measurement data for both pure and mixed states, we demonstrate quantum state estimation from partial measurement results that outperforms previously developed machine-learning-based methods in reconstruction fidelity and several conventional methods in terms of resource scaling. Notably, our developed model does not require training a separate model for each missing measurement, making it potentially applicable to quantum state estimation of large quantum systems where preprocessing is computationally infeasible due to the exponential scaling of quantum system dimension.
In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete understanding of the degradation in the purity of squeezed light is demanded. By implementing machine learning architecture with a convolutional neural network, we illustrate a fast, robust, and precise quantum state tomography for continuous variables, through the experimentally measured data generated from the balanced homodyne detectors. Compared with the maximum likelihood estimation method, which suffers from time consuming and over-fitting problems, a well-trained machine fed with squeezed vacuum and squeezed thermal states can complete the task of the reconstruction of density matrix in less than one second. Moreover, the resulting fidelity remains as high as $0.99$ even when the anti-squeezing level is higher than $20$ dB. Compared with the phase noise and loss mechanisms coupled from the environment and surrounding vacuum, experimentally, the degradation information is unveiled with machine learning for low and high noisy scenarios, i.e., with the anti-squeezing levels at $12$ dB and $18$ dB, respectively. Our neural network enhanced quantum state tomography provides the metrics to give physical descriptions of every feature observed in the quantum state and paves a way of exploring large-scale quantum systems.
Many quantum machine learning (QML) algorithms that claim speed-up over their classical counterparts only generate quantum states as solutions instead of their final classical description. The additional step to decode quantum states into classical vectors normally will destroy the quantum advantage in most scenarios because all existing tomographic methods require runtime that is polynomial with respect to the state dimension. In this Letter, we present an efficient readout protocol that yields the classical vector form of the generated state, so it will achieve the end-to-end advantage for those quantum algorithms. Our protocol suits the case that the output state lies in the row space of the input matrix, of rank $r$, that is stored in the quantum random access memory. The quantum resources for decoding the state in $ell_2$-norm with $epsilon$ error require $text{poly}(r,1/epsilon)$ copies of the output state and $text{poly}(r, kappa^r,1/epsilon)$ queries to the input oracles, where $kappa$ is the condition number of the input matrix. With our read-out protocol, we completely characterise the end-to-end resources for quantum linear equation solvers and quantum singular value decomposition. One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure, which we believe, will be of independent interest.