Do you want to publish a course? Click here

Proof of a conjecture of Sturmfels, Timme and Zwiernik

75   0   0.0 ( 0 )
 Added by Laurent Manivel
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We prove a conjecture of Sturmfels, Timme and Zwiernik on the ML-degrees of linear covariance models in algebraic statistics. As in our previous works on linear concentration models, the proof ultimately relies on the computation of certain intersection numbers on the varieties of complete quadrics.



rate research

Read More

We prove a generalization of the Shapiro-Shapiro conjecture on Wronskians of polynomials, allowing the Wronskian to have complex conjugate roots. We decompose the real Schubert cell according to the number of real roots of the Wronski map, and define an orientation of each connected component. For each part of this decomposition, we prove that the topological degree of the restricted Wronski map is given as an evaluation of a symmetric group character. In the case where all roots are real, this implies that the restricted Wronski map is a topologically trivial covering map; in particular, this gives a new proof of the Shapiro-Shapiro conjecture.
The Katz-Klemm-Vafa conjecture expresses the Gromov-Witten theory of K3 surfaces (and K3-fibred 3-folds in fibre classes) in terms of modular forms. Its recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera. We survey the various steps in the proof. The MNOP correspondence and a new Pairs/Noether-Lefschetz correspondence for K3-fibred 3-folds transform the Gromov-Witten problem into a calculation of the full stable pairs theory of a local K3-fibred 3-fold. The stable pairs calculation is then carried out via degeneration, localisation, vanishing results, and new multiple cover formulae.
In this paper we give a new proof of the ELSV formula. First, we refine an argument of Okounkov and Pandharipande in order to prove (quasi-)polynomiality of Hurwitz numbers without using the ELSV formula (the only way to do that before used the ELSV formula). Then, using this polynomiality we give a new proof of the Bouchard-Mari~no conjecture. After that, using the correspondence between the Givental group action and the topological recursion coming from matrix models, we prove the equivalence of the Bouchard-Mari~no conjecture and the ELSV formula (it is a refinement of an argument by Eynard).
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with $n$ edges packs $2n+1$ times into the complete graph $K_{2n+1}$. In this paper, we prove this conjecture for large $n$.
We prove that if the set of unordered pairs of real numbers is colored by finitely many colors, there is a set of reals homeomorphic to the rationals whose pairs have at most two colors. Our proof uses large cardinals and it verifies a conjecture of Galvin from the 1970s. We extend this result to an essentially optimal class of topological spaces in place of the reals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا