Do you want to publish a course? Click here

The Deligne-Simpson problem for connections on $mathbb{G}_m$ with a maximally ramified singularity

53   0   0.0 ( 0 )
 Added by Daniel Sage
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The classical additive Deligne-Simpson problem is the existence problem for Fuchsian connections with residues at the singular points in specified adjoint orbits. Crawley-Boevey found the solution in 2003 by reinterpreting the problem in terms of quiver varieties. A more general version of this problem, solved by Hiroe, allows additional unramified irregular singularities. We apply the theory of fundamental and regular strata due to Bremer and Sage to formulate a version of the Deligne-Simpson problem in which certain ramified singularities are allowed. These allowed singular points are called toral singularities; they are singularities whose leading term with respect to a lattice chain filtration is regular semisimple. We solve this problem in the important special case of connections on $mathbb{G}_m$ with a maximally ramified singularity at $0$ and possibly an additional regular singular point at infinity. We also give a complete characterization of all such connections which are rigid, under the additional hypothesis of unipotent monodromy at infinity.



rate research

Read More

Let ${mathcal B}_g(r)$ be the moduli space of triples of the form $(X,, K^{1/2}_X,, F)$, where $X$ is a compact connected Riemann surface of genus $g$, with $g, geq, 2$, $K^{1/2}_X$ is a theta characteristic on $X$, and $F$ is a stable vector bundle on $X$ of rank $r$ and degree zero. We construct a $T^*{mathcal B}_g(r)$--torsor ${mathcal H}_g(r)$ over ${mathcal B}_g(r)$. This generalizes on the one hand the torsor over the moduli space of stable vector bundles of rank $r$, on a fixed Riemann surface $Y$, given by the moduli space of holomorphic connections on the stable vector bundles of rank $r$ on $Y$, and on the other hand the torsor over the moduli space of Riemann surfaces given by the moduli space of Riemann surfaces with a projective structure. It is shown that ${mathcal H}_g(r)$ has a holomorphic symplectic structure compatible with the $T^*{mathcal B}_g(r)$--torsor structure. We also describe ${mathcal H}_g(r)$ in terms of the second order matrix valued differential operators. It is shown that ${mathcal H}_g(r)$ is identified with the $T^*{mathcal B}_g(r)$--torsor given by the sheaf of holomorphic connections on the theta line bundle over ${mathcal B}_g(r)$.
Over a smooth and proper complex scheme, the differential Galois group of an integrable connection may be obtained as the closure of the transcendental monodromy representation. In this paper, we employ a completely algebraic variation of this idea by restricting attention to connections on trivial vector bundles and replacing the fundamental group by a certain Lie algebra constructed from the regular forms. In more detail, we show that the differential Galois group is a certain ``closure of the aforementioned Lie algebra. This is then applied to construct connections on curves with prescribed differential Galois group.
125 - YanYan Li , Han Lu , Siyuan Lu 2021
We establish theorems on the existence and compactness of solutions to the $sigma_2$-Nirenberg problem on the standard sphere $mathbb S^2$. A first significant ingredient, a Liouville type theorem for the associated fully nonlinear Mobius invariant elliptic equations, was established in an earlier paper of ours. Our proof of the existence and compactness results requires a number of additional crucial ingredients which we prove in this paper: A Liouville type theorem for the associated fully nonlinear Mobius invariant degenerate elliptic equations, a priori estimates of first and second order derivatives of solutions to the $sigma_2$-Nirenberg problem, and a B^ocher type theorem for the associated fully nonlinear Mobius invariant elliptic equations. Given these results, we are able to complete a fine analysis of a sequence of blow-up solutions to the $sigma_2$-Nirenberg problem. In particular, we prove that there can be at most one blow-up point for such a blow-up sequence of solutions. This, together with a Kazdan-Warner type identity, allows us to prove $L^infty$ a priori estimates for solutions of the $sigma_2$-Nirenberg problem under some simple generic hypothesis. The higher derivative estimates then follow from classical estimates of Nirenberg and Schauder. In turn, the existence of solutions to the $sigma_2$-Nirenberg problem is obtained by an application of the by now standard degree theory for second order fully nonlinear elliptic operators.
In previous work, the authors have developed a geometric theory of fundamental strata to study connections on the projective line with irregular singularities of parahoric formal type. In this paper, the moduli space of connections that contain regular fundamental strata with fixed combinatorics at each singular point is constructed as a smooth Poisson reduction. The authors then explicitly compute the isomonodromy equations as an integrable system. This result generalizes work of Jimbo, Miwa, and Ueno to connections whose singularities have parahoric formal type.
For an abeloid variety $A$ over a complete algebraically closed field extension $K$ of $mathbb Q_p$, we construct a $p$-adic Corlette-Simpson correspondence, namely an equivalence between finite-dimensional continuous $K$-linear representations of the Tate module and a certain subcategory of the Higgs bundles on $A$. To do so, our central object of study is the category of vector bundles for the $v$-topology on the diamond associated to $A$. We prove that any pro-finite-etale $v$-vector bundle can be built from pro-finite-etale $v$-line bundles and unipotent $v$-bundles. To describe the latter, we extend the theory of universal vector extensions to the $v$-topology and use this to generalize a result of Brion by relating unipotent $v$-bundles on abeloids to representations of vector groups.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا