Do you want to publish a course? Click here

Chemical compositions in the vicinity of protostars in Ophiuchus

327   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have analyzed Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 4 Band 6 data toward two young stellar objects (YSOs), Oph-emb5 and Oph-emb9, in the Ophiuchus star-forming region. The YSO Oph-emb5 is located in a relatively quiescent region, whereas Oph-emb9 is irradiated by a nearby bright Herbig Be star. Molecular lines from $cyclic$-C$_{3}$H$_{2}$ ($c$-C$_{3}$H$_{2}$), H$_{2}$CO, CH$_{3}$OH, $^{13}$CO, C$^{18}$O, and DCO$^{+}$ have been detected from both sources, while DCN is detected only in Oph-emb9. Around Oph-emb5, $c$-C$_{3}$H$_{2}$ is enhanced at the west side, relative to the IR source, whereas H$_{2}$CO and CH$_{3}$OH are abundant at the east side. In the field of Oph-emb9, moment 0 maps of the $c$-C$_{3}$H$_{2}$ lines show a peak at the eastern edge of the field of view, which is irradiated by the Herbig Be star. Moment 0 maps of CH$_{3}$OH and H$_{2}$CO show peaks farther from the bright star. We derive the $N$($c$-C$_{3}$H$_{2}$)/$N$(CH$_{3}$OH) column density ratios at the peak positions of $c$-C$_{3}$H$_{2}$ and CH$_{3}$OH near each YSO, which are identified based on their moment 0 maps. The $N$($c$-C$_{3}$H$_{2}$)/$N$(CH$_{3}$OH) ratio at the $c$-C$_{3}$H$_{2}$ peak is significantly higher than at the CH$_{3}$OH peak by a factor of $sim 19$ in Oph-emb9, while the difference in this column density ratio between these two positions is a factor of $sim2.6 $ in Oph-emb5. These differences are attributed to the efficiency of the photon-dominated region (PDR) chemistry in Oph-emb9. The higher DCO$^{+}$ column density and the detection of DCN in Oph-emb9 are also discussed in the context of UV irradiation flux.



rate research

Read More

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 1.1 mm dust continuum and CO 2-1 emission toward six dense cores within the Ophiuchus molecular cloud. We detect compact, sub-arcsecond continuum structures toward three targets, two of which (Oph A N6 and SM1) are located in the Ophiuchus A ridge. Two targets, SM1 and GSS 30, contain two compact sources within the ALMA primary beam. We argue that several of the compact structures are small ($R lesssim 80$ au) accretion disks around young protostars, due to their resolved, elongated structures, coincident radio and x-ray detections, or bipolar outflow detections. While CO line wings extend to $pm 10-20$ km s$^{-1}$ for the more evolved sources GSS 30 IRS3 and IRS1, CO emission toward other sources, where detected, only extends a few km s$^{-1}$ from the cloud $v_mathrm{LSR}$. The dust spectral index toward the compact objects suggests that the disks are either optically thick at 1.1 mm, or that significant grain growth has already occurred. We identify, for the first time, a single compact continuum source ($R sim 100$ au) toward N6 embedded within a larger continuum structure. SM1N is extended in the continuum but is highly centrally concentrated, with a density profile that follows a $r^{-1.3}$ power law within 200 au, and additional structure suggested by the uv-data. Both N6 and SM1N show no clear bipolar outflows with velocities greater than a few km s$^{-1}$ from the cloud velocity. These sources are candidates to be the youngest protostars or first hydrostatic cores in the Ophiuchus molecular cloud.
Recent evidence based on APOGEE data for stars within a few kpc of the Galactic centre suggests that dissolved globular clusters (GCs) contribute significantly to the stellar mass budget of the inner halo. In this paper we enquire into the origins of tracers of GC dissolution, N-rich stars, that are located in the inner 4 kpc of the Milky Way. From an analysis of the chemical compositions of these stars we establish that about 30% of the N-rich stars previously identified in the inner Galaxy may have an accreted origin. This result is confirmed by an analysis of the kinematic properties of our sample. The specific frequency of N-rich stars is quite large in the accreted population, exceeding that of its in situ counterparts by near an order of magnitude, in disagreement with predictions from numerical simulations. We hope that our numbers provide a useful test to models of GC formation and destruction.
We present a 0.15$^{primeprime}$ resolution (21 au) ALMA 870 $mu$m continuum survey of 25 pointings containing 31 young stellar objects in the Ophiuchus molecular clouds. Using the dust continuum as a proxy for dust mass and circumstellar disk radius in our sample, we report a mean mass of 2.8$^{+2.1}_{-1.3}$ and 2.5$^{+9.2}_{-1.1}$ M$_{oplus}$ and a mean radii of 23.5$^{+1.8}_{-1.2}$ and 16.5$^{+2.8}_{-0.9}$ au, for Class I and Flat spectrum protostars, respectively. In addition, we calculate the multiplicity statistics of the dust surrounding young stellar objects in Ophiuchus. The multiplicity fraction (MF) and companion star fraction (CSF) of the combined Class I and Flats based solely on this work is 0.25 $pm$ 0.09 and 0.33 $pm$ 0.10, respectively, which are consistent with the values for Perseus and Orion. While we see clear differences in mass and radius between the Ophiuchus and Perseus/Orion protostellar surveys, we do not see any significant differences in the multiplicities of the various regions. We posit there are some differences in the conditions for star formation in Ophiuchus that strongly affects disk size (and consequently disk mass), but does not affect system multiplicity, which could imply important variation in planet formation processes.
We present full spectral scans from 200-670$mu$m of 26 Class 0+I protostellar sources, obtained with $Herschel$-SPIRE, as part of the COPS-SPIRE Open Time program, complementary to the DIGIT and WISH Key programs. Based on our nearly continuous, line-free spectra from 200-670 $mu$m, the calculated bolometric luminosities ($L_{rm bol}$) increase by 50% on average, and the bolometric temperatures ($T_{rm bol}$) decrease by 10% on average, in comparison with the measurements without Herschel. Fifteen protostars have the same Class using $T_{rm bol}$ and $L_{rm bol}$/$L_{rm submm}$. We identify rotational transitions of CO lines from J=4-3 to J=13-12, along with emission lines of $^{13}$CO, HCO$^+$, H$_{2}$O, and [CI]. The ratios of $^{12}$CO to $^{13}$CO indicate that $^{12}$CO emission remains optically thick for $J_{rm up}$ < 13. We fit up to four components of temperature from the rotational diagram with flexible break points to separate the components. The distribution of rotational temperatures shows a primary population around 100 K with a secondary population at $sim$350 K. We quantify the correlations of each line pair found in our dataset, and find the strength of correlation of CO lines decreases as the difference between $J$-level between two CO lines increases. The multiple origins of CO emission previously revealed by velocity-resolved profiles are consistent with this smooth distribution if each physical component contributes to a wide range of CO lines with significant overlap in the CO ladder. We investigate the spatial extent of CO emission and find that the morphology is more centrally peaked and less bipolar at high-$J$ lines. We find the CO emission observed with SPIRE related to outflows, which consists two components, the entrained gas and shocked gas, as revealed by our rotational diagram analysis as well as the studies with velocity-resolved CO emission.
The extremely young Class 0 object B1b-S and the first hydrostatic core (FSHC) candidate, B1b-N, provide a unique opportunity to study the chemical changes produced in the elusive transition from the prestellar core to the protostellar phase. We present 40x70 images of Barnard 1b in the 13CO 1->0, C18O 1->0, NH2D 1_{1,1}a->1_{0,1}s, and SO 3_2->2_1 lines obtained with the NOEMA interferometer. The observed chemical segregation allows us to unveil the physical structure of this young protostellar system down to scales of ~500au. The two protostellar objects are embedded in an elongated condensation, with a velocity gradient of ~0.2-0.4 m s^{-1} au^{-1} in the east-west direction, reminiscent of an axial collapse. The NH2D data reveal cold and dense pseudo-disks (R~500-1000 au) around each protostar. Moreover, we observe evidence of pseudo-disk rotation around B1b-S. We do not see any signature of the bipolar outflows associated with B1b-N and B1b-S, which were previously detected in H2CO and CH3OH, in any of the imaged species. The non-detection of SO constrains the SO/CH3OH abundance ratio in the high-velocity gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا