Do you want to publish a course? Click here

Goldman-type Lie algebras from hyperbolic knots

185   0   0.0 ( 0 )
 Added by Takefumi Nosaka
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We define Lie algebras from a hyperbolic knot in the 3-sphere. Since the definitions in terms of group homology are analogous to Goldman Lie algebra, we discuss relations among these Lie algebras.



rate research

Read More

We construct ternary self-distributive (TSD) objects from compositions of binary Lie algebras, $3$-Lie algebras and, in particular, ternary Nambu-Lie algebras. We show that the structures obtained satisfy an invertibility property resembling that of racks. We prove that these structures give rise to Yang-Baxter operators in the tensor product of the base vector space and, upon defining suitable twisting isomorphisms, we obtain representations of the infinite (framed) braid group. We use these results to construct invariants of (framed) links. We consider examples for low-dimensional Lie algebras, where the ternary bracket is defined by composition of the binary ones, along with simple $3$-Lie algebras, and their applications to some classes of links.
We introduce Heun algebras of Lie type. They are obtained from bispectral pairs associated to simple or solvable Lie algebras of dimension three or four. For $mathfrak{su}(2)$, this leads to the Heun-Krawtchouk algebra. The corresponding Heun-Krawtchouk operator is identified as the Hamiltonian of the quantum analogue of the Zhukovski-Voltera gyrostat. For $mathfrak{su}(1,1)$, one obtains the Heun algebras attached to the Meixner, Meixner-Pollaczek and Laguerre polynomials. These Heun algebras are shown to be isomorphic the the Hahn algebra. Focusing on the harmonic oscillator algebra $mathfrak{ho}$ leads to the Heun-Charlier algebra. The connections to orthogonal polynomials are achieved through realizations of the underlying Lie algebras in terms of difference and differential operators. In the $mathfrak{su}(1,1)$ cases, it is observed that the Heun operator can be transformed into the Hahn, Continuous Hahn and Confluent Heun operators respectively.
Baker showed that 10 of the 12 classes of Berge knots are obtained by surgery on the minimally twisted 5-chain link. In this article we enumerate all hyperbolic knots in S^3 obtained by surgery on the minimally twisted 5 chain link that realize the maximal known distances between slopes corresponding to exceptional (lens, lens), (lens, toroidal), (lens, Seifert fibred spaces) pairs. In light of Bakers work, the classification in this paper conjecturally accounts for most hyperbolic knots in S^3 realizing the maximal distance between these exceptional pairs. All examples obtained in our classification are realized by filling the magic manifold. The classification highlights additional examples not mentioned in Martelli and Petronios survey of the exceptional fillings on the magic manifold. Of particular interest, is an example of a knot with two lens space surgeries that is not obtained by filling the Berge manifold.
A braided Frobenius algebra is a Frobenius algebra with braiding that commutes with the operations, that are related to diagrams of compact surfaces with boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a group with the operation $(x,y,z) mapsto xy^{-1}z$, that is ternary self-distributive. Hopf algebras can be endowed with the algebra version of the heap operation. Using this, we construct braided Frobenius algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf algebras we show that the heap operation induces a braiding, by means of a Yang-Baxter operator on the tensor product, which satisfies the required compatibility conditions. Diagrammatic methods are employed for proving commutativity between the braiding and Frobenius operations.
We present a general symmetry-based framework for obtaining many-body Hamiltonians with scarred eigenstates that do not obey the eigenstate thermalization hypothesis. Our models are derived from parent Hamiltonians with a non-Abelian (or q-deformed) symmetry, whose eigenspectra are organized as degenerate multiplets that transform as irreducible representations of the symmetry (`tunnels). We show that large classes of perturbations break the symmetry, but in a manner that preserves a particular low-entanglement multiplet of states -- thereby giving generic, thermal spectra with a `shadow of the broken symmetry in the form of scars. The generators of the Lie algebra furnish operators with `spectrum generating algebras that can be used to lift the degeneracy of the scar states and promote them to equally spaced `towers. Our framework applies to several known models with scars, but we also introduce new models with scars that transform as irreducible representations of symmetries such as SU(3) and $q$-deformed SU(2), significantly generalizing the types of systems known to harbor this phenomenon. Additionally, we present new examples of generalized AKLT models with scar states that do not transform in an irreducible representation of the relevant symmetry. These are derived from parent Hamiltonians with enhanced symmetries, and bring AKLT-like models into our framework.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا